
Danfoss

Capacity controller AK-PC 730

REFRIGERATION AND AIR CONDITIONING

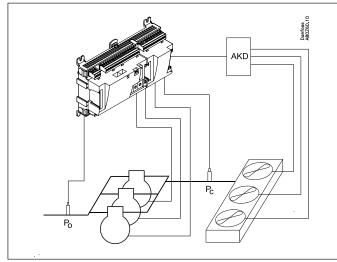
Manual

<u>Danfoss</u>

Contents

1. Introduction	3
Application	3
Principles	4
2. Design of a controller	7
Module survey	8
Common data for modules	
Controller	12
Extension module AK-XM 101A	
Extension module AK-XM 102A / AK-XM 102B	16
Extension module AK-XM 204A / AK-XM 204B	18
Extension module AK-XM 205A / AK-XM 205B	20
Extension module AK-OB 003A	
Extension module AK-OB 101A	
Extension module EKA 163B / EKA 164B	
Transformer module AK-PS 075 / 150	25
Preface to design	26
Functions	26
Connections	27
Limitations	
Design of a compressor and condenser control	
Procedure:	
Sketch	28
Compressor and condenser functions	
Connections	
Planning table	
Length	32
Linking of modules	
Determine the connection points	33
Connection diagram	34
Supply voltage	35
Ordering	
3. Mounting and wiring	
Mounting	
Mounting of analog output module	
Mounting of extension module on the basic module	
Wiring	40

4. Configuration and operation	.43
Configuration	45
Connect PC or PDA	45
Change language	
Unlock the configuration of the contollers	47
System setup	48
Set plant type	
Set control of compressors	
Setup control of condenser	
Setup general alarm inputs	
Setup separate thermostat functions	
Setup separate voltage functions	
Configuration of inputs and outputs	
Set alarm priorities	
Lock configuration	
Check configuration	
Check of connections	
Check of settings	
Schedule function	
Installation in network	
First start of control	
Start the control	
Manual capacity control	
5. Regulating functions	
Suction group	
Controlling sensor selection	
Reference	
Capacity control of compressors	
Capacity distribution methods	
Power pack types – compressor combinations	
Compressor timers	
Load shedding	
Cascade systems – coordination and injection	
Injection ON	
Liquid injection in suction line	
Safety functions	
Condenser Capacity control of condenser	
Reference for condensing pressure Capacity distribution	
Step regulation	
Speed regulation	
Condenser couplings	
Safety functions for condenser	
General monitoring functions	
Miscellaneous	
Appendix A – Compressor combinations and coupling pat-	
terns	
Appendix B - Recommened connection	
Appendix D neconinenca connection	

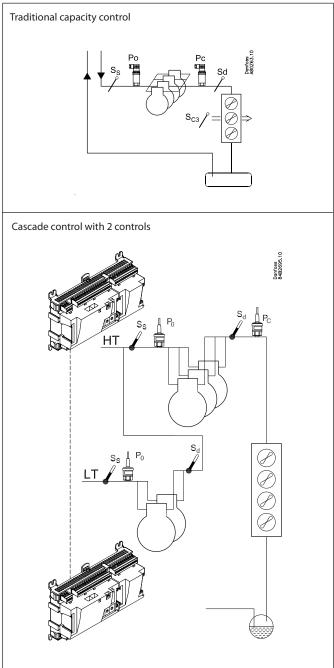

Danfoss

1. Introduction

Application

AK-PC 730 is a complete regulating unit for capacity control of compressors and condensers in refrigeration systems. It contains features that make it particularly suited for cascade systems, e.g. control of compressor capacity for separate control pressure in the low-pressure circuit.

In addition to capacity control the controller can give signals to other controllers about the operating condition, e.g. forced closing of expansion valves, alarm signals and alarm messages.



The controller's main function is to control compressors and condensers so that operation all the time takes place at the energyoptimum pressure conditions. Both suction pressure and condensing pressure are controlled by signals from pressure transmitters. Capacity control can be carried out by suction pressure P0, media temperature S4 or separate control pressure Pctrl (for cascade).

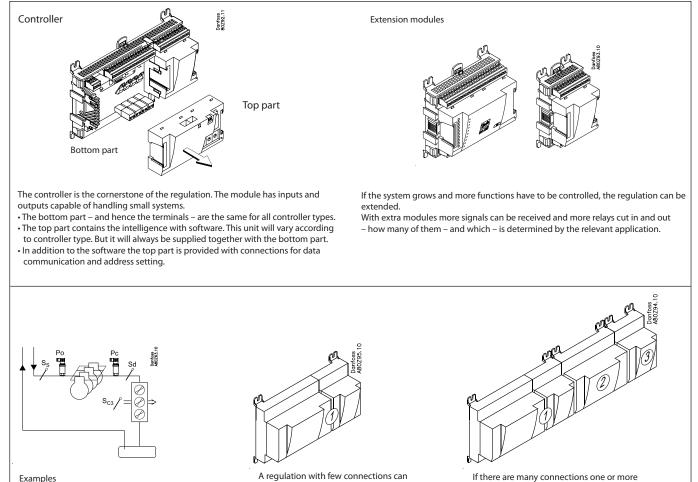
Among the different functions are:

- Capacity control of up to 4 compressors
- Up to 3 unloaders for each compressor
- Speed control of one or two compressors
- Up to 6 safety inputs for each compressor
- Option for capacity limitation to minimize consumption peaks
- When the compressor stops, signals can be transmitted to other
- controllers so that the electronic expansion valves will be closed start/stop of liquid injection into suction line
- Start/stop of liquid injection in heat exchanger (cascade)
- Satety monitoring of high pressue / low pressure / discharge temperature
- Capacity control of up to 6 fans
- Floating reference with regard to outside temperature
- Heat recovery function
- Step coupling, speed regulation or a combination
- Safety monitoring of fans
- The status of the outputs and inputs is shown by means of lightemitting diodes on the front panel
- Alarm signals can be generated directly from the controller and via data communication
- Alarms are shown with texts so that the cause of the alarm is easy to see.
- Plus some completely separate functions thar are totally independent of the regulation – such as alarm, thermostat and pressure control functions.

Examples

Janfoss

Principles


The great advantage of this series of controllers is that it can be extended as the size of the plant is increased. It has been developed for refrigeration control systems, but not for any specific application – variation is created through the read-in software and the way you choose to define the connections. It is the same modules that are used for each regulation and the composition can be changed, as required. With these modules (building blocks) it is possible to create a multitude of various kinds of regulations. But it is you who must help adjusting the regulation to the actual needs – these instructions will assist you to find your way through all the questions so that the regulation can be defined and the connections made.

Advantages

- The controller's size can "grow" as systems grow
- The software can be set for one or more regulations
- Several regulations with the same components
- Extension-friendly when systems requirements are changed
- Flexible concept:
- Controller series with common construction - One principle – many regulation uses
- modules are selected for the actual connection requirements

extension modules have to be mounted

- The same modules are used from regulation to regulation

Examples

alone

be performed with the controller module

Danfoss

anfoss 0290.1

Direct connection

Setup and operation of an AK controller must be accomplished via the "AK-Service Tool" software program.

The programme is installed on a PC, and setup and operation of the various functions are carried out via the controller's menu displays.

Displays

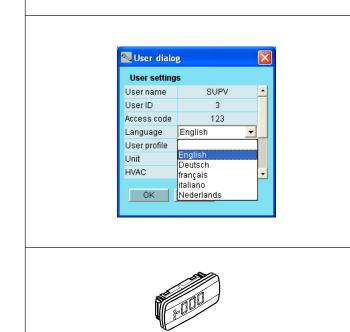
The menu displays are dynamic, so that different settings in one menu will result in different setting possibilities in other menus.

A simple application with few connections will give a setup with few settings.

A corresponding application with many connections will give a setup with many settings.

From the overview display there is access to further displays for the compressor regulation and the condenser regulation.

At the bottom of the display there is access to a number of general functions, such as "time table", "manual operation", "log function", "alarms", and "service" (configuration).


Network linking

The controller can be linked up into a network together with other controllers in an ADAP-KOOL[®] refrigeration control system. After the setup operation can be performed at a distance with, say, our software program type AKM.

Users

The controller comes supplied with several languages, one of which can be selected and employed by the user. If there are several users, they may each have their choice of language. All users must be assigned a user profile which either gives access to full operation or gradually limits the operation to the lowest level that only allows you "to see".

An external display can be fitted in order for P0 (Suction) and Pc

080Z026

📉 AK-PC 730

Temp

Thermostats

🐨 Voltage inputs

LON

LON

🕂 General alarm inputs

AKM

Δĸ

DANBUSS

Overview

🔒 01:004 AK-PC 73 💌

Ref

/── -123.9 °C -15.0 °C Stopped

🛱 -123.9 °C 35.0 °C Stopped

Overview

Status Alarm

6

External display

(Condensing) readings to be displayed.

Danfoss 30297.1

Dantoss

Light-emitting diodes

A number of light-emitting diodes makes it possible to follow the signals that are received and transmitted by the controller.

Log

From the log function you can define the measurements you wish to be shown.

The collected values can be printed, or you may export them to a file. You can open the file in Excel.

If you are in a service situation you can show measurements in a trend function. The measurements are then made realtime and displayed instantly.

Alarm

The display gives you an overview of all active alarms. If you wish to confirm that you have seen the alarm you can cross it off in the acknowledge field.

If you want to know more about a current alarm you can click on it and obtain an information display on the screen.

A corresponding display exists for all earlier alarms. Here you can upload information if you need further details about the alarm history.

Trouble-shooting

The controller contains a function that continuously follows a number of measurements and deals with them. The result indicates whether the function is OK or whether an error may be expected within a given period of time ("the trip down the rollercoaster has started"). At this time an alarm is transmitted about the situation – no error has appeared as yet, but it will come.

One example may be slow clogging-up of a condenser. When the alarm comes the capacity has been reduced, but the situation is not serious. There will be time to plan a service call.

Danfoss

2. Design of a controller

This section describes how the controller is designed.

The controller in the system is based on a uniform connection platform where any deviations from regulation to regulation is determined by the used top part with a specific software and by which input and output signals the relevant application will require. If it is an application with few connections, the controller module (top part with belonging bottom part) may be sufficient. If it is an application with many connections it will be necessary to use the controller module plus one or more extension modules.

This section will give you a survey of possible connections plus assistance in selecting the modules required by your actual application.

Janfoss

Module survey

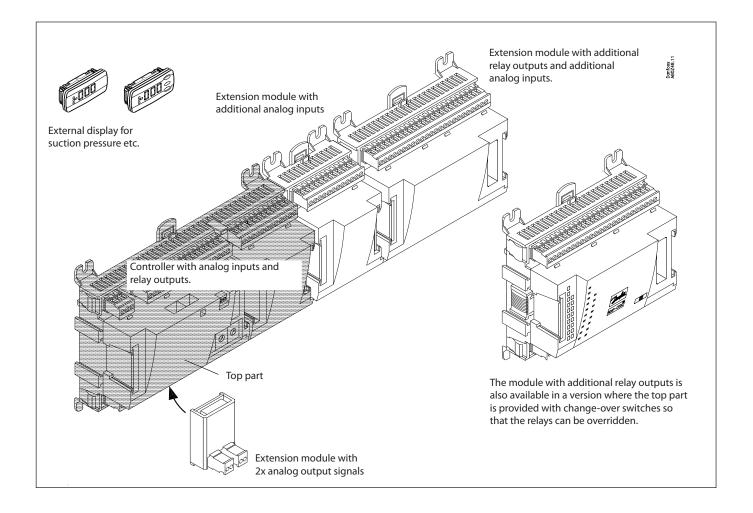
- Controller module capable of handling minor plant requirements.
- Extension modules. When the complexity becomes greater and additional inputs or outputs are required, modules can be attached to the controller. A plug on the side of the module will transmit the supply voltage and data communication between the modules.

Top part

The upper part of the controller module contains the intelligence. This is the unit where the regulation is defined and where data communication is connected to other controllers in a bigger network.

Connection types

There are various types of inputs and outputs. One type may, for example, receive signals from sensors and switches, another may receive a voltage signal, and a third type may be outputs with relays etc. The individual types are shown in the table below.


Optional connection

When a regulation is planned (set up) it will generate a need for a number of connections distributed on the mentioned types. This connection must then be made on either the controller module or an extension module. The only thing to be observed is that the types must not be mixed (an analog input signal must for instance not be connected to a digital input).

Programming of connections

The controller must know where you connect the individual input and output signals. This takes place in a later configuration where each individual connection is defined based on the following principle:

- to which module
- at which point ("terminals")
- what is connected (e.g. pressure transmitter/type/ pressure range)

<u>Danfoss</u>

1. Controller		
Туре	Function	Application
AK-PC 730	Controller for capacity control of compressors and condensers	Compressor / Condenser / Both/cascade control

2. Extension modules and survey of inputs and outputs

Туре	Analog inputs	On/Off outputs		On/off supply (DI signal)	voltage	Analog outputs	Module with switches	
		For sensors, pres- sure transmitters etc.	Relay (SPDT)	Solid state	Low voltage (max. 80 V)	High voltage (max. 260 V)	0-10 V d.c.	For override of relay outputs
Controller	11	4	4	-	-	-	-	
Extension mod	ules							
AK-XM 101A	8							
AK-XM 102A				8				
AK-XM 102B					8			
AK-XM 204A		8						
AK-XM 204B		8					x	
AK-XM 205A	8	8						
AK-XM 205B	8	8					x	
5	extension module car om for one module.	n be placed on the PC	board in the cor	ntroller module.				
AK-OB 003A						2		

3. AK operation and accessories

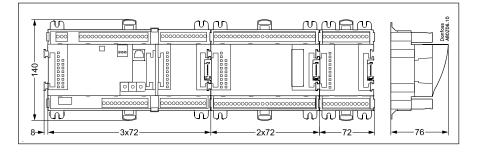
Туре	Function	Application
Operation		
AK-ST 500	Software for operation of AK controllers	AK-operation
-	Cable between PC and AK controller	AK - Com port
-	Cable between zero modem cable and AK controller / Cable between PDA cable and AK controller	AK - RS 232
Accessories	Transformer module 230 V / 115 V to 24 V	
AK-PS 075	18 VA	
AK-PS 150	36 VA	Supply for controller
Accessories	External display that can be connected to the controller modu	le. For showing, say, the suction pressure
EKA 163B	Display	
EKA 164B	Display with operation buttons	
		Length = 2 m
-	Cable between display and controller	Length = 6 m
Accessories	Real time clock for use in controllers that require a clock funct	ion, but are not wired with data communication.
AK-OB 101A	Real time clock with battery backup.	To be mounted in an AK controller

On the following pages there is data specific to each module.

Common data for modules

Supply voltage	24 V a.c. +/- 20%		
Power consumption	AK (controller)	12 VA	
	AK-XM 101, 102, 107	2 VA	
	AK-XM 204, 205	5 VA	
Analog inputs	Pt 1000 ohm /0°C	Resolution: 0.1°C Accuracy: +/- 0.5°C	
	Pressure transmitter type AKS 32R / AKS 32 (1-5 V)	Resolution:1 mV Accuracy +/- 10 mV	
	Voltage signal 0-10 V	Max. connection of 5 pressure transmitters on one module	
	Contact function (On/Off)	On at R < 20 ohm Off at R > 2K ohm (Gold -plated contacts not necessary)	
On/off supply voltage inputs	Low voltage 0 / 80 V a.c./d.c.	Off: U < 2 V On: U > 10 V	
	High voltage 0 / 260 V a.c.	Off: U < 24 V On: U > 80 V	
Relay outputs	AC-1 (ohmic)	4 A	
SPDT	AC-15 (inductive)	3 A	
	U	Min. 24 V Max. 230 V Low and high voltage must not be connected to the same output group	
	Fuse	5 A (T)	
Solid state outputs	Can be used for loads that are cut in and out frequently, e.g. : rail heat, fans and AKV valve	Max. 240 V a.c. , Min. 48 V a.c. Max. 0.5 A, Leak < 1 mA Max. 1 AKV	
Ambient temperature	During transport	-40 to 70°C	
	During operation	-20 to 55°C , 0 to 95% RH (non condensing) No shock influences / vibrations	
Enclosure	Material	PC / ABS	
	Density	IP10, VBG 4	
	Mounting	For mounting on wall or DIN rail	
Weight with screw terminals	modules in100- / 200- / controller-series	Ca. 200 g / 500 g / 600 g	
Approvals	EU low voltage directive and EMC require- ments are complied with	LVD tested according to EN 60730 EMC tested Immunity according to EN 61000-6-2 Emission according to EN 50081-1	
	UL 873, c PN us	UL file number: E166834	

The mentioned data applies to all modules. If data is specific, this is mentioned together with the module in question.


Dimensions

The module dimension is 72 mm. Modules in the 100-series consist of one module Modules in the 200-series consist of two

modules

Controllers consist of three modules

Dantoss

Controller

Function

There are several controllers in the series. The function is determined by the programmed software, but outwardly the controllers are identical – they all have the same connection possibilities:

11 analog inputs for sensors, pressure transmitters, voltage signals and contact signals.

8 digital outputs, with 4 Solid state outputs and 4 relay outputs

Supply voltage

24 V a.c. or d.c. to be connected to the controller.

The 24 V must **not** be retransmitted and used by other controllers as it is not galvanically separated from inputs and outputs. In other words, you **must** use a transformer for each controller. Class II is required. The terminals must **not** be earthed.

The supply voltage to any extension modules is transmitted via the plug on the right-hand side.

The size of the transformer is determined by the power requirement of the total number of modules.

The supply voltage to a pressure transmitter can be taken either from the 5 V output or from the 12 V output depending on transmitter type.

Data communication

If the controller is to be included in a system, communication must take place via the LON connection. The installation has to be made as mentioned in the separate instructions for LON communication.

Address setting

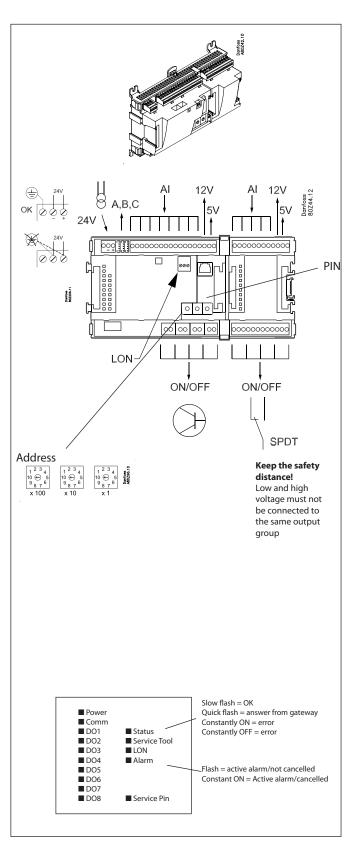
When the controller is connected to a gateway type AKA 245, the controller's address must be set between 1 and 119.

Service PIN

When the controller is connected to the data communication cable the gateway must have knowledge of the new controller. This is obtained by pushing the key PIN. The LED "Status" will flash when the gateway sends an acceptance message.

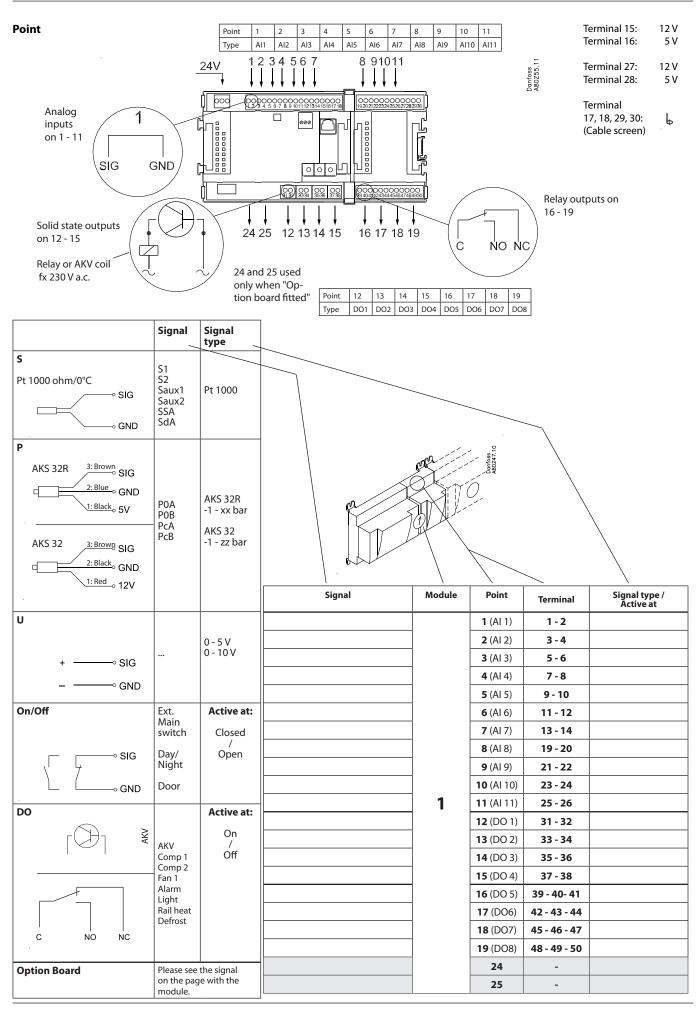
Operation

The configuration operation of the controller must take place from the software programme "Service Tool". The program must be installed on a PC, and the PC must be connected to the controller via the network plug on the front of the unit.


Light-emitting diodes

There are two rows with LED's. They mean: Left row:

- Voltage supply to the controller
- Communcation active with the bottom PC board (red = error) • Status of outputs DO1 to DO8


Right row:

- Software status (slow flash = OK)
- Communication with Service Tool
- Communication on LON
- Alarm when LED flashes
- 3 LED's that are not used
- "Service Pin" switch has been activated

A small module (option board) can be placed on the bottom part of the controller. The module is described later in the document.

Danfoss

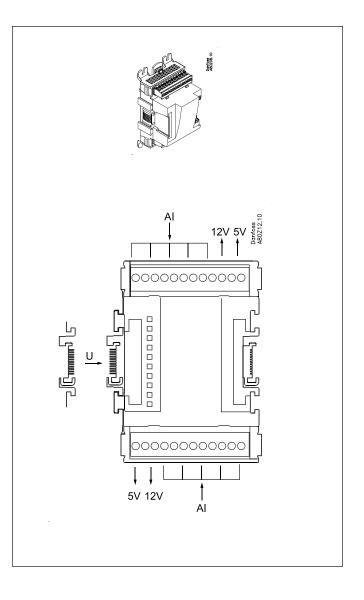
Danfoss

Extension module AK-XM 101A

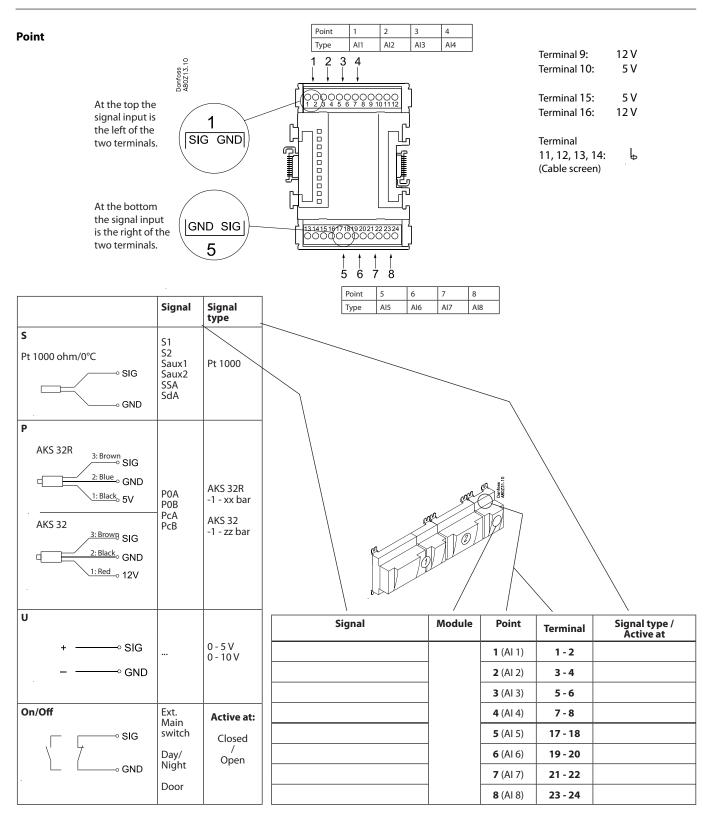
Function

The module contains 8 analog inputs for sensors, pressure transmitters, voltage signals and contact signals.

Supply voltage


The supply voltage to the module comes from the previous module in the row.

Supply voltage to a pressure transmitter can be taken from either the 5 V output or the 12 V output depending on transmitter type.


Light-emitting diodes

Only the two top LED's are used. They indicate the following: • Voltage supply to the module

• Communication with the controller is active (red = error)

Danfoss

Danfoss

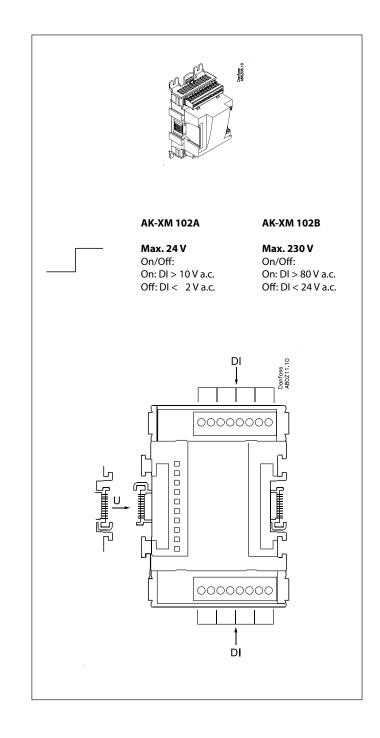
Extension module AK-XM 102A / AK-XM 102B

Function

The module contains 8 inputs for on/off voltage signals.

Signal

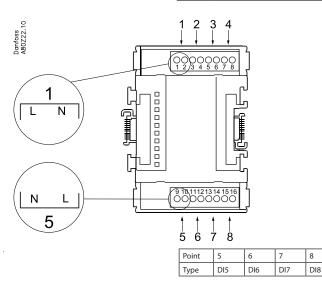
AK-XM 102A is for low voltage signals. AK-XM 102B is for high voltage signals.

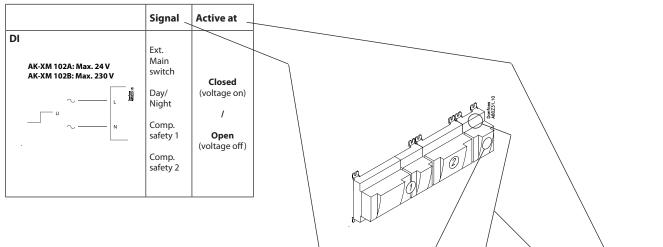

Supply voltage

The supply voltage to the module comes from the previous module in the row.

Light-emitting diodes

They indicate:


- Voltage supply to the module
- Communication with the controller is active (red = error)
- Status of the individual inputs 1 to 8 (when lit = voltage)



<u>Danfoss</u>

Point

Point	1	2	3	4
Туре	DI1	DI2	DI3	DI4

/	1	\ \	\ \
Module	Point	Terminal	Active at
	1 (DI 1)	1 - 2	
	2 (DI 2)	3 - 4	
	3 (DI 3)	5 - 6	
	4 (DI 4)	7 - 8	
	5 (DI 5)	9 - 10	
	6 (DI 6)	11 - 12	
	7 (DI 7)	13 - 14	
	8 (DI 8)	15 - 16	
	Module	1 (DI 1) 2 (DI 2) 3 (DI 3) 4 (DI 4) 5 (DI 5) 6 (DI 6) 7 (DI 7)	1 (Dl 1) 1 - 2 2 (Dl 2) 3 - 4 3 (Dl 3) 5 - 6 4 (Dl 4) 7 - 8 5 (Dl 5) 9 - 10 6 (Dl 6) 11 - 12 7 (Dl 7) 13 - 14

Danfoss

Extension module AK-XM 204A / AK-XM 204B

Function

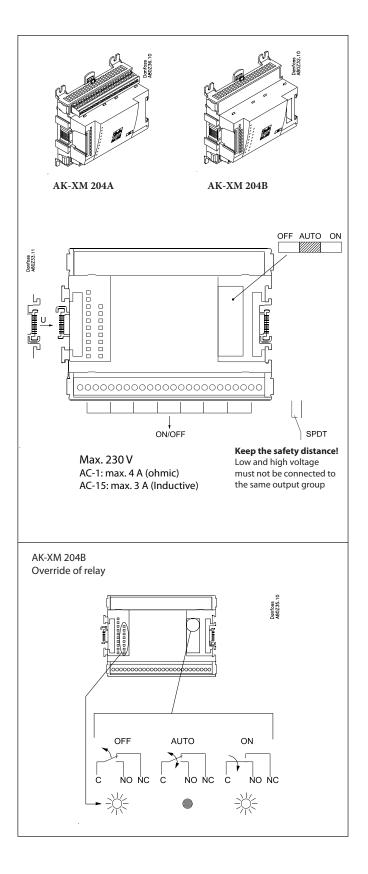
The module contains 8 relay outputs.

Supply voltage

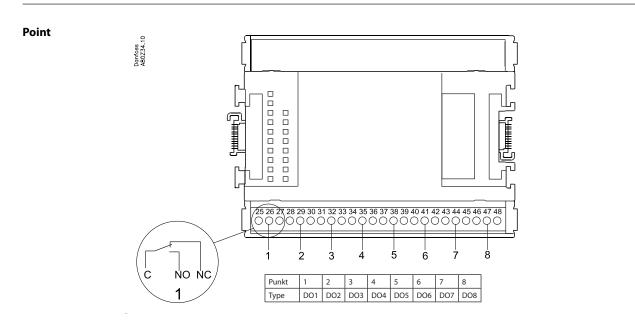
The supply voltage to the module comes from the previous module in the row.

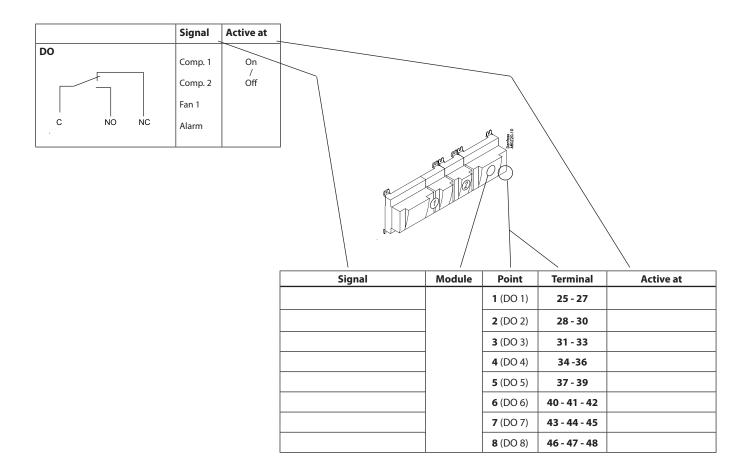
AK-XM 204B only Override of relay

Eight change-over switches at the front make it possible to override the relay's function. Either to position OFF or ON. In position Auto the controller carries out the control.


Light-emitting diodes

There are two rows with LED's. They indicate the following: Left row:


- Voltage supply to the controller
- Communcation active with the bottom PC board (red = error) • Status of outputs DO1 to DO8
- Right row: (AK-XM 204B only):
- Override of relays ON = override OFF = no override


Fuses

Behind the upper part there is a fuse for each output.

Danfoss

Extension module AK-XM 205A / AK-XM 205B

Function

The module contains: 8 analog inputs for sensors, pressure transmitters, voltage signals and contact signals. 8 relay outputs.

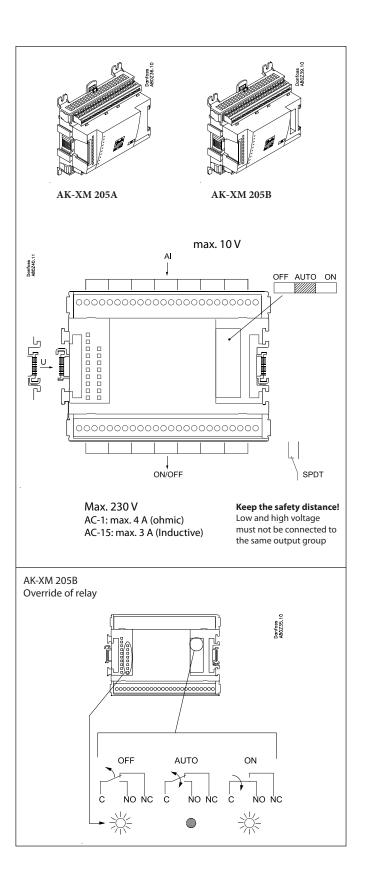
Supply voltage

The supply voltage to the module comes from the previous module in the row.

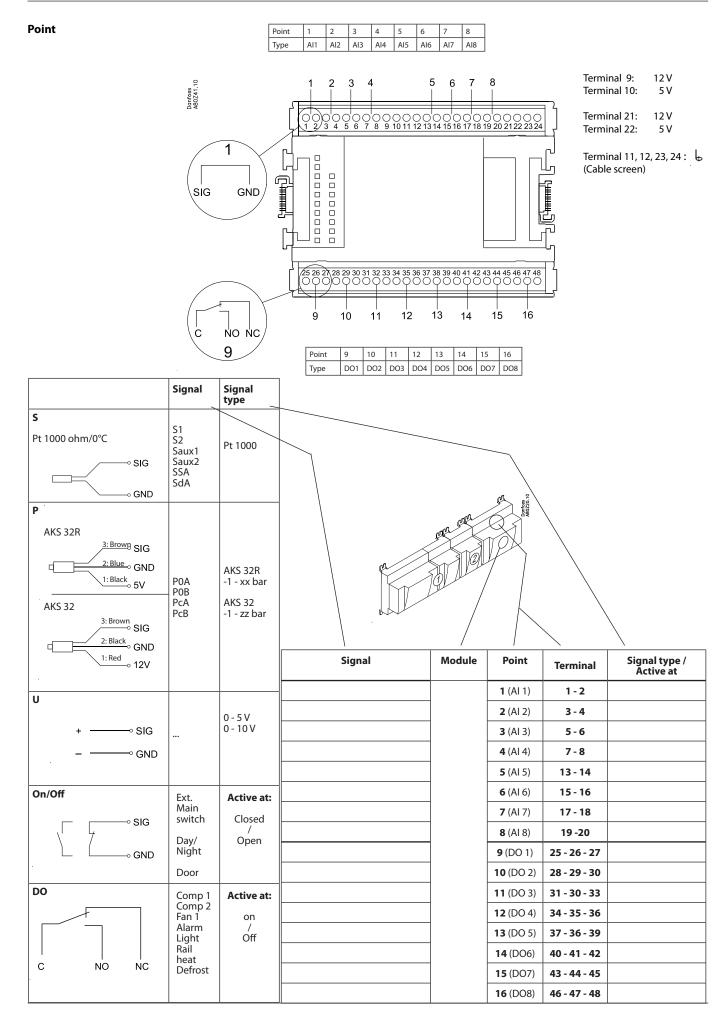
AK-XM 205B only

Override of relay

Eight change-over switches at the front make it possible to override the relay's function. Either to position OFF or ON. In position Auto the controller carries out the control.


Light-emitting diodes

There are two rows with LED's. They mean: Left row:


- Voltage suply to the controller
- Communcation active with the bottom PC board (red = error) • Status of outputs DO1 to DO8
- Right row: (AK-XM 205B only):
- Override of relays
- ON = override
- OFF = no override

Fuses

Behind the upper part there is a fuse for each output.

Danfoss

Danfoss

Extension module AK-OB 003A

Function

The module contains two analog voltage outputs of 0 - 10 V.

Supply voltage

The supply voltage to the module comes from the controller module.

Placing

The module is placed on the PC board in the controller module.

Point

The two outputs have points 24 and 25. They are shown on the earlier page where the controller is also mentioned.

Max. load l < 2.5 mA R > 4 kohm

AO		AO	0 - 10 V
----	--	----	----------

Danfoss

Extension module AK-OB 101A

Function

The module is a real time clock module with battery backup.

The module can be used in controllers that are not linked up in a data communication unit together with other controllers. The module is used here if the controller needs battery backup for the following functions

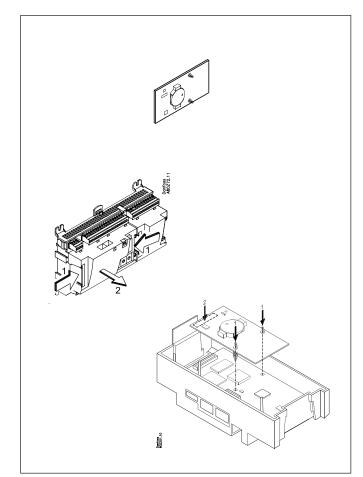
- Clock function
- Fixed times for day/night change-over
- Fixed defrost times
- Saving of alarm log in case of power failure
- Saving of temperature log in case of power failure

Connection

The module is provided with plug connection.

Placing

The module is placed on the PC board inside the top part.


Point

No point for a clock module to be defined – just connect it.

Working life of the battery

The working life of the battery is several years – even if there are frequent power failures.

An alarm is generated when the battery has to be replaced. After the alarm there are still several months of operating hours left in the battery.

Danfoss

Extension module EKA 163B / EKA 164B

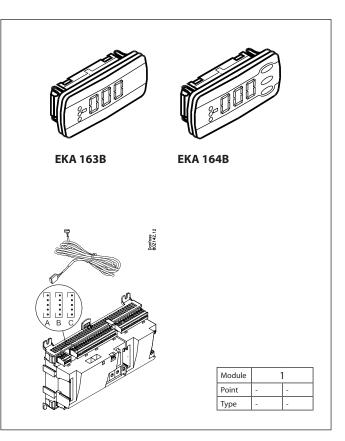
Function

Display of important measurements from the controller, e.g. appliance temperature, suction pressure or condensing pressure. Setting of the individual functions can be performed by using the display with control buttons.

It is the controller used that determines the measurements and settings that can occur.

Connection

The extension module is connected to the controller module via a cable with plug connections. You have to use one cable per module. The cable is supplied in various lengths.


Both types of display (with or without control buttons) can be connected to either display output A, B or C.

Placing

The extension module can be placed at a distance of up to 15 m from the controller module.

Point

No point has to be defined for a display module – you simply connect it.

<u>Danfoss</u>

Transformer module AK-PS 075 / 150

Function

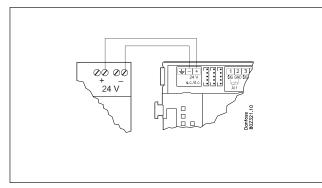
24 V supply for controller.

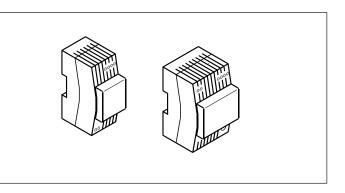
Supply voltage

230 V a.c or 115 V a.c. (from 100 V a.c. to 240 V a.c.)

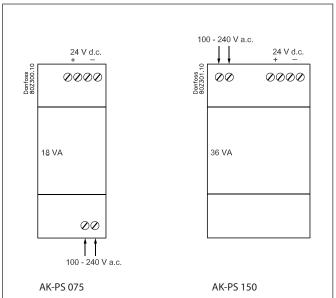
Placing

On DIN-rail


Effect


Туре	Output tension	Output current	Power
AK-PS 075	24 V d.c.	0.75 A	18 VA
AK-PS 150	24 V d.c. (adjustable)	1.5 A	36 VA

Dimension


Туре	High	Width
AK-PS 075	90 mm	36 mm
AK-PS 150	90 mm	54 mm

Supply to a controller

Connections

Danfoss

Preface to design

Be aware of the following when the number of extension modules is being planned. A signal may have to be changed, so that an additional module may be avoided.

- An ON/OFF signal can be received in two ways. Either as a contact signal on an analog input or as voltage on a low or high-voltage module.
- An ON/OFF output signal can be given in two ways. Either with a relay switch or with solid state. The primary difference is the permitted load and that the relay switch contains a cutout switch.

Mentioned below is a number of functions and connections that may have to be considered when a regulation has to be planned. There are more functions in the controller than the ones mentioned here, but those mentioned have been included in order that the need for connections can be established.

Functions

Clock function

Clock function and change-over between summer time and winter time are contained in the controller.

The clock is zeroset when there is power failure.

The clock's setting is maintained if the controller is linked up in a network with a gateway, or a clock module can be mounted in the controller.

Start/stop of regulation

Regulation can be started and stopped via the software. External start/stop can also be connected.

Alarm function

If the alarm is to be sent to a signal transmitter, a relay output will have to be used.

Extra temperature sensors and pressure sensors

If additional measurements have to be carried out beyond the regulation, sensors can be connected to the analog inputs.

Forced control

The software contains a forced control option. If an extension module with relay outputs is used, the module's top part can be with change-over switches – switches that can override the individual relays into either OFF or ON position.

Data communication

The controller module has terminals for LON data communication. The requirements to the installation are described in a separate document.

Connections

In principle there are the following types of connections:

Analog inputs "AI"

This signal must be connected to two terminals.

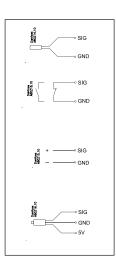
Signals can be received from the following sources:

- Temperature signal from Pt 1000 ohm temperature sensor
- Contact signal where the input is shortcircuited or "opened", respectively
- Voltage signal from 0 to 10 V
- Signal from pressure transmitter AKS 32 or AKS 32R

The supply voltage is supplied from the module's terminal board where there is both a 5 V supply and a 12 V supply. When programming the pressure transmitter's pressure range must be set.

ON/OFF voltage inputs "DI"

This signal must be connected to two terminals.


• The signal must have two levels, either 0 V or "voltage" on the input. There are two different extension

modules for this signal type: - low-voltage signals, e.g. 24 V

- high-voltage signals, e.g. 230 V

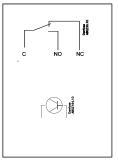
When programming the function must be set:

- Active when the input is without voltage
- · Active when voltage is applied to the input.

100

ON/OFF output signals "DO"

There are two types, as follows:

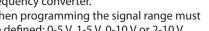

Relay outputs

All relay outputs are with change-over relay so that the required function can be obtained when the controller is without voltage.

Solid state outputs

controller module.

Reserved for AKV valves, but output can cut an external relay in and out, as with a relay output. The output is only found on the



When programming the function must be set:

- Active when the output is activated
- Active when the output is not activated.

Analog output signal "AO"

This signal is to be used if a control signal is to be transmitted to an external unit, e.g. a frequency converter.

When programming the signal range must be defined: 0-5 V, 1-5 V, 0-10 V or 2-10 V.

Limitations

As the system is very flexible regarding the number of connected units you must check whether your selection complies with the few limitations there are.

The complexity of the controller is determined by the software, the size of the processor, and the size of the memory. It provides the controller with a certain number of connections from which data can be downloaded, and others where coupling with relays can be performed.

- The sum of connections cannot exceed 40.
- ✓ The number of extension modules must be limited so that the total power will not exceed **36** VA (including controller).
- ✓ No more than 5 pressure transmitters may be connected to one controller module.
- ✓ No more than **5** pressure transmitters may be connected to one extension module.

AK-PC 730

Danfoss

Design of a compressor and condenser control

Procedure:

- 1. Make a sketch of the system in question
- 2. Check that the controller's functions cover the required application
- 3. Consider the connections to be made
- 4. Use the planning table. / Note down the number of connections ./ add up
- 5. Are there enough connections on the controller module? If not, can they be obtained by changing an ON/OFF input signal from voltage signal to contact signal, or will an extension module be required?
- 6. Decide which extension modules are to be used
- 7. Check that the limitations are observed
- 8. Calculate the total length of modules
- 8. The modules are linked together
- 10. The connection sites are established
- 11. Draw a connection diagram or a key diagram
- 12. Size of supply voltage/transformer

- Follow these 12 steps

1 Sketch

Make a sketch of the system in question.

Danfoss

2

Compressor and condenser functions

	AK-PC 730
Application	
Regulation of a compressor group	x
Regulation of a condenser group	x
Both compressor group and condenser group	x
Regulation of compressor capacity	
Regulation sensor. Either P0, S4 or Pctrl	x
Pl-regulation	х
Max. number of compressor steps including unloads	4
Max. number of unloaders each compressor	3
Identical compressor capacities	х
Different compressor capacities	x
Sequentiel operation (first in / last out)	х
Speed regulation of 1 or 2 compressors	х
Run time equalisation	x
Min. restart time	х
Min. On-time	x
Liquid injection in suction line	х
Liquid injection in cascade heat exchanger	х
Suction pressure reference	
Override via P0 optimisation	х
Override via "night setback"	x
Override via "0 - 10 V signal"	x
Regulation of condenser capacity	
Regulation sensor. Either: Pc or S7	X
Step regulation	x
Max. number of steps	6
Speed regulation	X
Step and speed regulation	x
Limitation of speed during night operation	x
Heat recovery function via thermostat function	X
Heat recovery function via DI signal	X
Trouble-shooting function FDD on condenser	X
Condenser pressure reference	
Floating condensing pressure reference	x
Setting of reference for heat recovery function	x
Safety functions	
Min. suction pressure	x
Max. suction pressure	x
Max. condensing pressure	X
Max. discharge gas temperature	x
Min. / Max. superheat	X
Safety monitoring of compressors	x
Common high pressure monitoring of compressors	X
Safety monitoring of condenser fans	X 10
General alarm functions with time delay	10
Miscellaneous	
Extra sensors	7
Inject On function	x
Option for connection of separate display	2
Separate thermostat functions	5
Separate pressostat functions	5

A bit more abot the functions

Compressor

Regulation of up to 4 compressors. steps inclusive unloaders. Compressor No. 1 or 2 can be speed-regulated. The following can be used as control sensor: 1) P0 - Suction pressure 2) S4 - Cold brine temperature 3) Pctrl - Condensing pressure in the low pressure circuit controls

the high-pressure circuit for cascade control.

(P0 is also used for 2 and 3, but for low-pressure safety.)

Condenser

Regulation of up to 6 condenser steps.

Fans can be speed-regulated.

Relay outputs and solid state outputs may be used, as desired.

The following can be used as control sensor:

1) Pc - Condensing pressure

2) S7 - Warm brine temperature (Pc is used here for high-pressure safety.)

Connection between high-pressure and low-pressure circuits

Capacity control of the high-pressure circuit can be adjusted by the condensing pressure in the low-pressure circuit.

The controller can give off a signal from a relay output so that the low-pressure circuit can only start when the high-pressure circuit is on.

The controller can receive a signal from the low-pressure circuit that there is a need for refrigeration.

Speed regulation of condenser fans

The function requires an analog output module. A relay output may be used for start/stop of the speed regulation. The fans may also be cut in and out by relay outputs.

Safety circuit

If signals are to be received from one or more parts of a safety circuit, each signal must be connected to an ON/OFF input.

Day/night signal for raising the suction pressure

The clock function can be used, but an external ON/OFF signal may be used instead.

If the "P0 optimisation" function is used, no signal will be given concerning the raising of the suction pressure. The P0 optimisation will see to this.

"Inject ON" override function

The function closes expansion valves on evaporator controls when all compressors are stopped.

The function can take place via the data communication, or it may be wired via a relay output.

Separate thermostat and pressure control functions

A number of thermostats can be used according to your wishes. The function requires a sensor signal and a relay output. In the controller there are settings for cutin and cutout values. An associated alarm function may also be used.

Separate voltage measurements

A number of voltage measurements can be used according to your wishes. The signal can for example be 0-10 V. The function requires a voltage signal and a relay output. In the controller there are settings for cutin and cutout values. An associated alarm function may also be used.

If you want to know more about the functions, go to chapter 5.

Jantoss

Connections

3

Here is a survey of the possible connections. The texts can be read in context with the table on the next page.

Analog inputs

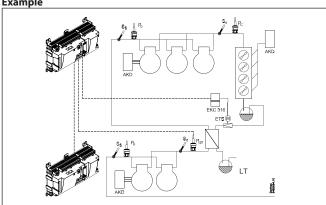
- **Temperature sensors**
- S4 (Cold brine temperature)
- Must be used when the control sensor for compressor control has been selected as S4.
- Ss (suction gas temperature)
- Must always be used in connection with compressor regulation. Sd (discharge gas temperature)
- Must always be used in connection with compressor regulation. Sc3 (outdoor temperature)
- To be used when monitoring function FDD is used. To be used when regulation is performed with floating condenser reference
- S7 (warm brine return temperature)
- Must be used when the control sensor for condenser has been selected as S7.
- Saux (1-4), any extra temperature sensors

Up to four additional sensors for monitoring and data collection may be connected. These sensors can be used for general thermostat functions. Pressure transmitters

PO Suction Pressure

- Must always be used in connection with compressor regulation (frost protection).
- Pctrl (control pressure for cascade)
- Must only be used if the control sensor for compressor control has been selected as Pctrl (cascade)
- Pc Condensing Pressure
- Must always be used in connection with compressor or condenser regulation
- Paux (1-3)
- Up to 3 extra pressure transmitters can be connected for monitoring and data collection.

These sensors can be used for general pressure switch functions.


Note. A pressure transmitter type AKS 32 or AKS 32R can supply signals to a maximum of five controllers.

Voltage signal

Fxt. Ref

Used if a reference override signal is received from another control.

Example

R404A / CO2 Cascade system.

This example is for AK-PC 730 in the high-pressure circuit.

HT Compressor group:

- Capacity control by Pctrl in CO2 circuit
- Refrigerant R404A
- 1 only speed-regulated compressor (30 kW, 30-60 Hz)
- 2 only compressors (15 kW) with working-hour equalisation
- Safety monitoring of each compressor
- Common high-pressure monitoring on pressure line
- Start/Stop coordination between R404A/CO2 circuits
- Po setting –12°C

• Voltage inputs (1-5)

Up to 5 extra voltage signals can be connected for monitoring and data collection. These signals are used for general voltage input functions.

On/Off-inputs

- Contact function (on an analog input) or
- voltage signal (on an extension module)
- Common safety input for all compressors (e.g. scommon high-pressure/ low-pressure pressure switch)
- Up to 6 signals from the safety circuit of each compressor
- Compressor release signal on low-pressure control in cascade
- · Compressor requirements signal on high-pressure control in cascade
- Signal from the condenser fans safety circuit
- Any signal from the frequency converter's safety circuit
- External start/stop of regulation
- External day/night signal (raise/lower the suction pressure reference). The function is not used if the "P0 optimisation" function is used. • DI alarm (1-10) inputs
 - Up to 10 no. extra on/off signals for general alarm for monitoring and data collection can be connected.

On/off-outputs

- Relay outputs · Compressors (max. 4 steps incl. unloaders)
- Unloaders
- Fan motor (1-6)
- Injection On function (signal for evaporator controls. One per suction group).
- Start/stop of liquid injection in heat exchanger
- · Compressor release, output signal from high-pressure control in cascade
- · Compressor request, output signal from low-pressure control in cascade
- Start/stop of liquid injection in suction line
- Start/stop of heat recovery
- ON/OFF signal for start/stop of speed regulation
- Alarm relay
- On/off signals from general thermostats (1-5), pressure switches (1-5) or voltage input functions (1-5).

Solid state outputs

The solid state outputs on the controller module may be used for the same functions as those mentioned under "relay outputs". (The output will always be "OFF" when the controller has a power failure). Analog output

- Speed regulation of the condenser's fans.
- · Speed regulation of the compressor

Condenser:

- 4 fans, speed regulated
- Safety monitoring of each fan
- Pc regulates based on outdoor temperature sensor Sc3
- Liquid injections:
- Start/Stop signal to liquid injection (EKC 316/ETS)
- Fan in plant room:
- Thermostat control of fan in engine room
- Safety functions:
- Monitoring of Po, Pc, Sd and superheat in suction line
- Po max = -5° C, Po min = -20° C
- Pc max = 50 °C • Sd max = 120°C
- SH min = 5 °C, SH max = 35 °C
- Other:
- Monitoring of liquid level via contact input
- Alarm output used
- External main switch via contact input
- Monitoring of CO2 gas. Detector 0-10 V signal from Danfoss type GDC.
- 0-10 V corresponding to 0 10.000 ppm. Alarm at 9000 ppm.

Data from this example is used on the next page. The result is that the following modules should be used:

AK-PC 730 basic module

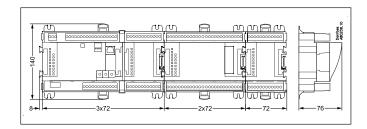
- AK-XM 102B digital input module
- AK-OB 101A analog output module

Planning table									Analog output signal 0-10 V		7
The table helps you establish whether there are enough	a		nal		nal		nal		nal		
inputs and outputs on the basic controller.	ign		sig		sig		sig		sig		
If there are not enough of them, the controller must be extended by one or more of the mentioned extension	it s		ge		ge		ut		out		
modules.	h l		olta		olta		utp		utl		sue
modules.	j j	ole	fr	ole	ffv	ole	ffo	ole	0 0	ole	atic
Note down the connections you will require and add	Analog input signal	Example	On/off voltage signal	Example	On/off voltage signal	Example	On/Off output signal	Example	nalc	Example	Limitations
them up	Ā	ŵ	Ō	ŵ	Ō	ŵ	Ō	ŵ	A	ŵ	=
Analog inputs											
Temperature sensors, Ss, Sd, Sc3, S4, S7		3									
Extra temperature sensor / separate thermostats		1									
Pressure transmitters, P0, Pc, Pctrl., separate pressostats		3									P = Max. 5 / module
Voltage signal from other regulation, separate signals		1									
Heat recovery via thermostat											
On/off inputs	Kon	takt	24	V	230) V					
Safety circuits, common for all compressors			<u> </u>		230	1					Max.1
Safety circuits, Oil pressure						3					Max. 1/ comp.
Safety circuits, comp. Motor protection											
Safety circuits, comp. Motor temp.											
Safety circuits, comp. High pres. thermostat											
Safety circuits, comp. High pres. pressostat											
Safety circuits, general for each compressor											
Safety circuits, condenser fans						4					Max. 1/ fan
Safety circuits, frequency converter											
External start/stop		1									
LT release input / HT request input		1									
Night setback of suction pressure											
Separate alarm functions		1									
Load shedding											
Heat recovery via DI											
On/off outputs											
Compressors (motors), + unloaders								3			Max. 4
Fan motors	-							1			Max. 6
Alarm relay	-							1			Max. 1
Inject ON											Max. 1
Separate thermostat and pressostat functions and voltage								-			Max. 1 44 Max. 5+5+5 5 Max.1 45
measurements								1			Max. 5+5+5
Heat recovery function via thermostat											Max.1
Liquid injection in suction line / heat exchanger								1			Max.1
HT relsease output / LT request output								1			
Analog control signal, 0-10 V											
Frequency converter, Comp.1 + (comp.2 or fans)	-									2	Max. 2
Sum of connections for the regulation		11		0		8		8		2	Sum = max. 40
Number of connections on a controller module	11	11	0	0	0	0	8	8	0	0	
Missing connections, if applicable		0	-	-	-	8		0	-	2	
The missing connections to be supplied by one or more extens	ion m	odule	s:								Sum of power
AK-XM 101A (8 analog inputs)											pcs. á 2 VA =
AK-XM 102A (8 digital low voltage inputs)											pcs. á 2 VA =
AK-XM 102B (8 digital high voltage outputs)						1					pcs. á 2 VA =
AK-XM 204A / B (8 relay outputs)											pcs. á 5 VA =
AK-XM 205A / B (8 analog inputs + 8 relay outp.)											pcs. á 5 VA =
AK_OB 003A (2 analog outputs)										1	pcs. á 0 VA = 0
											1 pcs. á 12 VA = 1

Danfoss

Jantoss

8 Length


If you use many extension modules the controller's length will grow accordingly. The row of modules is a complete unit which cannot be broken.

The module dimension is 72 mm. Modules in the 100-series consist of one module Modules in the 200-series consist of two modules The controller consist of three modules The length of an aggregate unit = $n \times 72 + 8$

or in an other way:

9

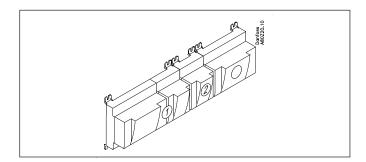
Module	Туре	Number		at	Length
Controller module		1	х	224	= 224 mm
Extension module	200-series	_	х	144	= mm
Extension module	100-series	_	х	72	= mm
Total length					=mm

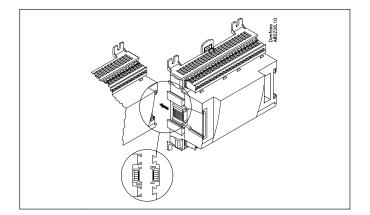
Example continued: Controller module + 1 extension module in 100-series = 224 + 72 = 296 mm.

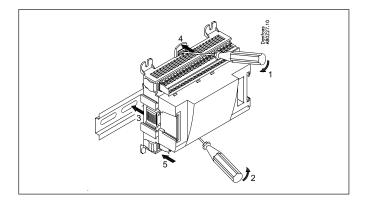
Linking of modules

Start with the controller module and then mount the selected extension modules. The sequence is of no importance.

However, you must **not** change the sequence, i.e. rearrange the modules, after you have made the setup where the controller is told which connections are found on which modules and on which terminals.


The modules are attached to one another and kept together by a connection which at the same time transmits the supply voltage and the internal data communication to the next module.


Mounting and removal must always be performed when there is no voltage.


The protective cap mounted on the controller's plug connection must be moved to the last vacant plug connection so that the plug will be protected against short-circuit and dirt.

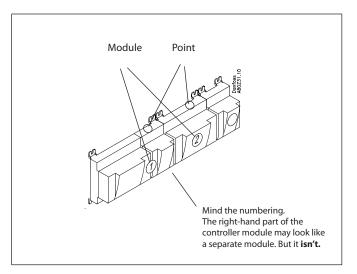
When the regulation has started the controller will all the time check whether there is connection to the connected modules. This status can be followed by the light-emitting diode.

When the two catches for the DIN rail mounting are in open position the module can be pushed into place on the DIN rail – no matter where in the row the module is found. Removal is likewise carried out with the two catches in the open position.

Danfoss

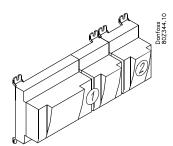
10 Determine the connection points

All connections must be programmed with module and point, so in principle it does not matter where the connections are made, as long as it takes place on a correct type of input or output.


- The controller is the first module, the next one is 2, etc.
- A point is the two or three terminals belonging to an input or output (e.g. two terminals for a sensor and three terminals for a relay).

The preparation of the connection diagram and the subsequent programming (configuration) should take place at the present time. It is most easily accomplished by filling in the connection survey for the relevant modules. Principle:

i incipie.			
Name	On module	On Point	Function
fx Compressor 1	X	х	Close
fx Compressor 2	Х	х	Close
fx Alarm relay	X	х	NC
fx Main switch	Х	х	Close
fx P0	X	х	AKS 32R 1-6 bar

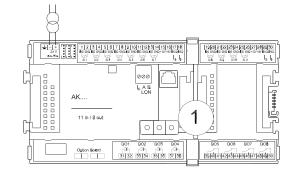

The connection survey from the controller and any extension modules are uploaded from the paragraph "Module survey. E.g. controller module:

Signal	Module	Point	Terminal	Signal type / Active at
		1 (Al 1)	1 - 2	
		2 (AI 2)	3 - 4	
		3 (AI 3)	5 - 6	
		4 (AI 4)	7 - 8	

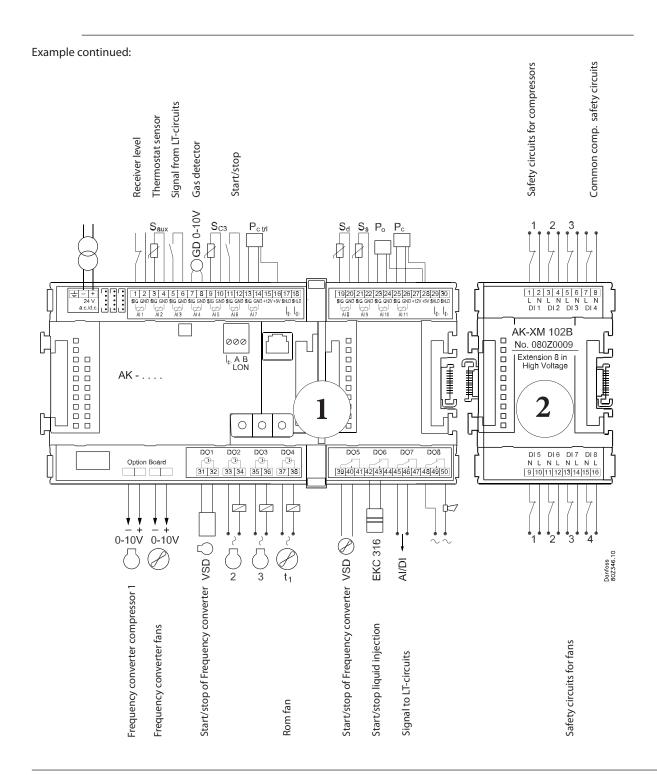
- Columns 1, 2, 3 and 5 are used for the programming. - Columns 2 and 4 are used for the connection diagram.

Signal	Module	Point	Terminal	Signal type / Active at
Receiver level on/off		1 (Al 1)	1 - 2	Open
Thermostat sensor in plant room - Saux1		2 (AI 2)	3 - 4	Pt 1000
Signal from LT (HT request)		3 (AI 3)	5 - 6	Closed
Gas detector]	4 (AI 4)	7 - 8	0-10 V
Outdoor temperature - Sc3]	5 (Al 5)	9 - 10	Pt 1000
External main switch		6 (AI 6)	11 - 12	Closed
Pressure signal in LT-circuit - Pctrl		7 (AI 7)	13 - 14	MBS2050-60
Discharge gas temperature- Sd		8 (AI 8)	19 - 20	Pt 1000
Suction gas temperature - Ss		9 (Al 9)	21 - 22	Pt 1000
Suction pressure - P0	1	10 (Al 10)	23 - 24	AKS32-12
Condensing pressure - Pc		11 (Al 11)	25 - 26	AKS32-34
Compressor 1 (VSD start)		12 (DO 1)	31 - 32	ON
Compressor 2		13 (DO 2)	33 - 34	ON
Compressor 3		14 (DO 3)	35 - 36	ON
Room Fan (Thermostat 1)]	15 (DO 4)	37 - 38	ON
Fan (VSD start)]	16 (DO 5)	39-40- 41	ON
Start of liquid injection		17 (DO6)	42-43- 44	ON
Signal to LT (HT release)		18 (DO7)	45-46- 47	ON
Alarm		19 (DO8)	48 -49- 50	OFF
Speed control of compressor		24	-	0-10 V
Speed control of fans		25	-	0-10 V

Signal	Module	Point	Terminal	Active at
Compressor 1 Gen. Safety		1 (DI 1)	1 - 2	Open
Compressor 2 Gen. Safety		2 (DI 2)	3 - 4	Open
Compressor 3 Gen. Safety		3 (DI 3)	5 - 6	Open
All comp. common Safety	2	4 (DI 4)	7 - 8	Open
Fan 1 Gen. Safety	2	5 (DI 5)	9 - 10	Open
Fan 2 Gen. Safety		6 (DI 6)	11 - 12	Open
Fan 3 Gen. Safety		7 (DI 7)	13 - 14	Open
Fan 4 Gen. Safety		8 (DI 8)	15 - 16	Open


Example continued:

Danfoss


11 Connection diagram

Drawings of the individual modules may be ordered from Danfoss. Format = dwg and dxf.

You may then yourself write the module number in the circle and draw the individual connections.

Danfoss

12 Supply voltage

Supply voltage is only connected to the controller module. The supply to the other modules is transmitted via the plug between the modules. The supply must be 24 V +/-20%. One transformer must be used for each controller. The transformer must be a class II. The 24 V must not be shared by other controllers or units. The analog inputs and outputs are **not** galvanically separated from the supply.

The + and – 24V input must not be earthed.

Transformer size

The power consum	ption grows v	vith the nu	umber	of modules used:
Module	Туре	Number	á	Effect
Controller		1 x	12 =	12 VA
Extension module	200-series	_ X	5 =	VA
Extension module	100-series	_ x	2 =	VA
Total				VA

Example continued:

Controller module + 1 extension module in 100-series	12 VA 2 VA
Tranformer size (least)	 14 VA

Ordering

1. Controller

Туре	Function	Application	Language	Code no.	Example continued
Controller for capacity control of compressors	Compressor / condenser /	English, German, French, Dutch, Italian	080Z0116		
AK-PC 730	AK-PC 730 and condensers both /	both /	English, Spanish, Portuguese	080Z0117	
		cascade control	English, Danish,	080Z0118	x

2. Extension modules and survey for inputs and outputs

Туре	Analog inputs	On/Off outp	outs	s On/off supply vo (DI signal)		Analog outputs	Module with switches	Code no.	Example continued
	For sensors, pressure transmitters etc.	Relay (SPDT)	Solid state	Low voltage (max. 80 V)	High voltage (max. 260 V)	0-10 V d.c.	For over- ride of relay outputs	With screw terminals	
Controller	11	4	4	-	-	-	-	-	
Extension mo	dules				·				
AK-XM 101A	8							080Z0007	
AK-XM 102A				8				080Z0008	
AK-XM 102B					8			080Z0009	x
AK-XM 204A		8						080Z0006	
AK-XM 204B		8					х	080Z0016	
AK-XM 205A	8	8						080Z0005	
AK-XM 205B	8	8					х	080Z0015	
	extension modu oom for one mod		ed on the PC boa	rd in the controll	er module.		· ·		
AK-OB 003A						2		080Z0251	x

3. AK operation and accessories

Function	Application Co		Example continued
Software for operation of AK controllers	AK-operation	080Z0161	x
Cable between PC and AK controller	AK - Com port	080Z0262	x
Cable between zero modem cable and AK controller / Cable between PDA cable and AK controller	AK - RS 232	080Z0261	
Transformer module 230 V / 115 V to 24 V			
18 VA			
36 VA	Supply for controller	080Z0054	x
External display that can be connected to the contro	oller module. For showing, say, the suction p	ressure	
Display		084B8574	
Display with operation buttons		084B8575	
Califa hatan an disalan and anotas llan	Length = 2 m	084B7298	
Cable between display and controller	Length = 6 m	084B7299	
Real time clock for use in controllers that require a c	lock function, but are not wired with data co	mmunication.	
Real time clock with battery backup.	To be mounted in an AK controller	080Z0252	
	Software for operation of AK controllers Cable between PC and AK controller Cable between PDA cable and AK controller Transformer module 230 V / 115 V to 24 V 18 VA 36 VA External display that can be connected to the control Display Display with operation buttons Cable between display and controller	Software for operation of AK controllers AK-operation Cable between PC and AK controller AK - Com port Cable between zero modem cable and AK controller / Cable between PDA cable and AK controller AK - RS 232 Transformer module 230 V / 115 V to 24 V AK - RS 232 18 VA Supply for controller 36 VA Supply for controller External display that can be connected to the controller module. For showing, say, the suction provide the provided to the controller module. For showing, say, the suction provided to the controller module. For showing, say, the suction provided to the controller module. For showing, say, the suction provided to the controller module. For showing, say, the suction provided to the controller module. For showing, say, the suction provided to the controller module. For showing, say, the suction provided to the controller module. For showing, say, the suction provided to the controller module. For showing, say, the suction provided to the controller module. For showing, say, the suction provided to the controller module. For showing, say, the suction provided to the controller module. For showing, say, the suction provided to the controller module. For showing, say, the suction provided to the control module. For showing, say, the suction provided to the control module. For showing, say, the suction provided to the control module. For showing, say, the suction provided to the control module. For showing, say, the suction provided to the control module. For showing, say, the suction provided to the control module. For showing, say, the suction provided to the control module. For showing, say, the suction provided to the control module. For showing, say, the succeeded to the control modu	Software for operation of AK controllers AK-operation 080Z0161 Cable between PC and AK controller AK - Com port 080Z0262 Cable between zero modem cable and AK controller / Cable between PDA cable and AK controller AK - RS 232 080Z0261 Transformer module 230 V / 115 V to 24 V AK - RS 232 080Z0053 18 VA Supply for controller 080Z0053 36 VA Supply for controller 080Z0054 External display that can be connected to the controller module. For showing, say, the suction pressure 084B8574 Display 084B8575 084B8575 Cable between display and controller Length = 2 m 084B7298 Length = 6 m 084B7299 084B7299 Real time clock for use in controllers that require a clock function, but are not wired with data communication. 084B7299

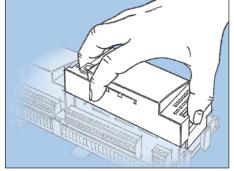
<u>Danfvis</u>

3. Mounting and wiring

This section describes how the controller:

- Is fitted
- Is connected

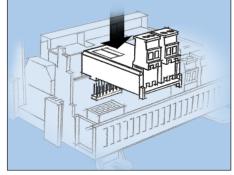
We have decided to work on the basis of the example we went through previously, i.e. the following modules:

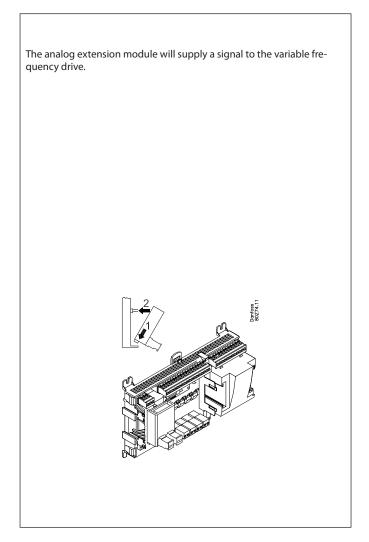

- AK-PC 730 controller module
- AK-XM 102B digital input module
- AK-OB 003A analog output module

Danfoss

Mounting

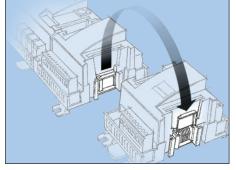
Mounting of analog output module


1. Lift the top part off the basic module <u>The basic module must not be connected to voltage</u>.


Press in the plate on the left-hand side of the light-emitting diodes and the plate on the right-hand side for the red address changers.

Lift the top part off the basic module.

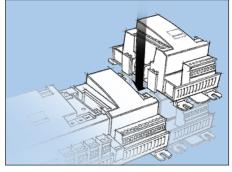
2. Mount the extension module in the basic module


3. Put the top part back on the basic module

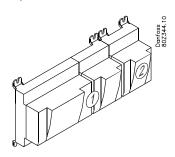
Dantoss

Mounting of extension module on the basic module

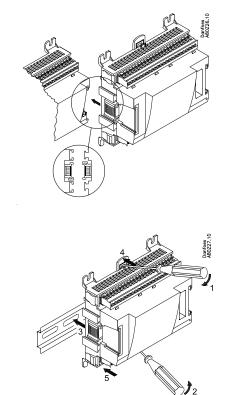
1. Move the protective cap



Remove the protective cap from the connection plug on the right-hand side of the basic module.


Place the cap on the connection plug to the right of the extension module that is to be mounted on the extreme right-hand side of the AK assembly.

2. Assemble the extension module and the basic module


The basic module must not be connected to voltage.

In our example one extension module is to be fitted to the basic module. The sequence is thus:

All the subsequent settings that affect the two extension modules are determined by this sequence.

When the two snap catches for the DIN rail mounting are in the open position, the module can be pushed into place on the DIN rail – regardless of where the module is on the row.

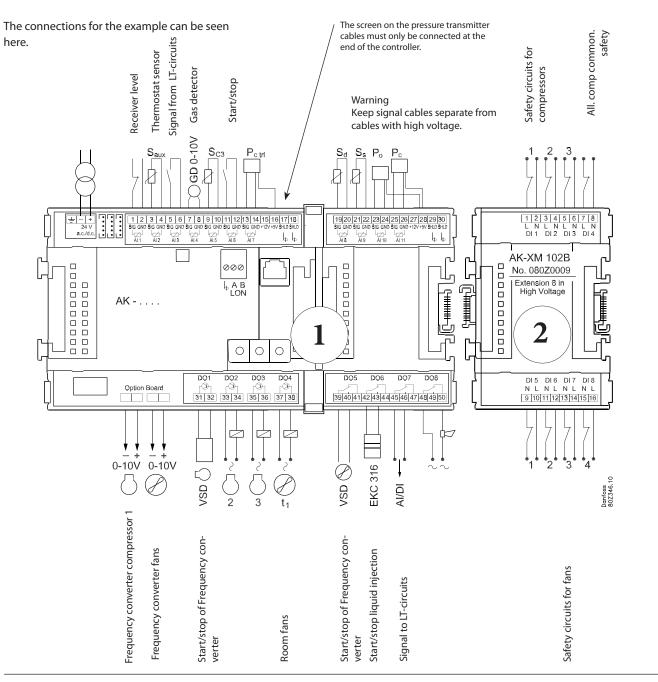
Disassembly is thus done with the two snap catches in the open position.

Danfoss

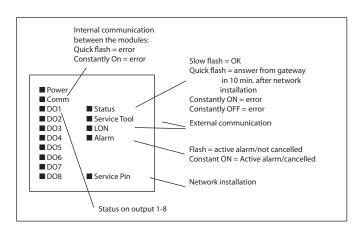
Wiring

Decide during planning which function is to be connected and where this will be.

1. Connect inputs and outputs


Here are the tables for the example:

Signal	Module	Point	Terminal	Signal type / Active at
Receiver level on/off		1 (Al 1)	1 - 2	Open
Thermostat sensor in plant room - Saux1		2 (AI 2)	3 - 4	Pt 1000
Signal from LT (HT request)		3 (AI 3)	5 - 6	Sluttet
Gas detector		4 (Al 4)	7 - 8	0-10 V
Outdoor temperature - Sc3		5 (Al 5)	9 - 10	Pt 1000
Extern main switch		6 (AI 6)	11 - 12	Closed
Pressure signal in LT-circuits - Pctrl		7 (AI 7)	13 - 14	MBS 2050-60
Discharge gas temperature- Sd		8 (Al 8)	19 - 20	Pt 1000
Suction gas temperature - Ss		9 (Al 9)	21 - 22	Pt 1000
Suction pressure - P0	1	10 (Al 10)	23 - 24	AKS32-12
Condensing pressure - Pc] -	11 (Al 11)	25 - 26	AKS32-34
Compressor 1 (VSD start)		12 (DO 1)	31 - 32	ON
Compressor 2		13 (DO 2)	33 - 34	ON
Compressor 3		14 (DO 3)	35 - 36	ON
Room fan (Thermostat 1)		15 (DO 4)	37 - 38	ON
Fan (VSD start)]	16 (DO 5)	39-40- 41	ON
Start of liquid injection]	17 (DO6)	42-43- 44	ON
Signal to LT (HT release)]	18 (DO7)	45-46- 47	ON
Alarm]	19 (DO8)	48- 49 -50	OFF
Speed control of compressors		24	-	0-10 V
Speed control of fans		25	-	0-10 V


Signal	Module	Point	Terminal	Active at
Compressor 1 Gen. safety		1 (DI 1)	1 - 2	Open
Compressor 2 Gen. safety		2 (DI 2)	3 - 4	Open
Compressor 3 Gen. safety		3 (DI 3)	5 - 6	Open
All comp. common safety		4 (DI 4)	7 - 8	Open
Fan 1 Gen. safety	2	5 (DI 5)	9 - 10	Open
Fan 2 Gen. safety]	6 (DI 6)	11 - 12	Open
Fan 3 Gen. safety		7 (DI 7)	13 - 14	Open
Fan 4 Gen. safety	1	8 (DI 8)	15 - 16	Open

The function of the switch functions can be seen in the last column. There are pressure transmitters for several pressure ranges. Here there are three different ones. One up to 12 bar, one up to 34 bar and one up to 60 bar.

- 2. Connect LON communication network The installation of the data communication must comply with the requirements set out in document RC8AC.
- 3. Connect supply voltage Is 24 V, and the supply must not be used by other controllers or devices. The terminals must not be earthed.
- 4. Follow light-emitting diodes When the supply voltage is connected the controller will go through an internal check. The controller will be ready in just under one minute when the light-emitting diode "Status" starts flashing slowly.
- 5. When there is a network Set the address and activate the Service Pin.
- 6. The controller is now ready to be configured.

<u>Danfoss</u>

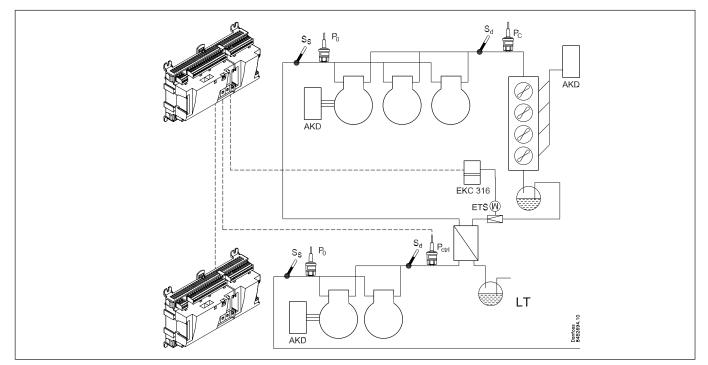
<u>Danfoss</u>

4. Configuration and operation

This section describes how the controller: • Is configured

Is operated

We have decided to work on the basis of the example we went through previously, i.e. compressor control with 3 compressors and condenser control with 4 fans.


The example is shown overleaf.

Danfoss

Refrigerating plant example

We have decided to describe the setup by means of an example comprising a compressor group and a condenser. The example is the same as the one given in the "Design" section, i.e. the controller is an AK-PC 730 + extension modules.

R404A / CO2 Cascade system.

This example is for AK-PC 730 in the high-pressure circuit.

HT Compressor group:

- · Capacity control by Pctrl in CO2 circuit
- Refrigerant R404A
- 1 only speed-regulated compressor (30 kW, 30-60 Hz)
- 2 only compressors (15 kW) with working-hour equalisation
- Safety monitoring of each compressor
- Common high-pressure monitoring on pressure line
- Start/Stop coordination between R404A/CO2 circuits

P0 setting –12°C

- Condenser:
- 4 fans, special controlled
- Safety monitoring of each fan
- Pc regulates based on outdoor temperature Sc3 Liquid injection:

 Start/Stop signal for liquid injection (EKC 316/ETS) Fan in plant room

Thermostat control of fan in plant room

- Safety functions:
- Monitoring of Po, Pc, Sd and superheat on suction line (Ss)
- P0 max. = -5 °C, P0 min. = -20 °C
- Pc max. = 50 °C
- Sd max. = 120 °C
- SH min. = 5 °C, SH max. = 35 °C

Other:

- · Monitoring of liquid level via contact input
- Alarm output used

• External main switch via contact input

• Monitoring of CO2 gas. Detector 0-10 V signal from type GDC. - 0-10 V corresponding to 0 – 10.000 ppm. Alarm at 9000 ppm.

Note!

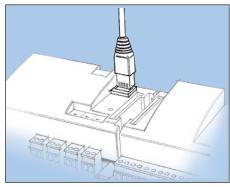
Compressor capacity in the high-pressure circuit is controlled by Pctrl which is mounted in the low-pressure circuit. Note that the same pressure transmitter can be used as condensing pressure sensor Pc for the low-pressure controller.

The variable capacity of the compressor with speed adjustment should be greater than that of the other compressors. This ensures that there are no "gaps" in the cut in capacity. See chapter 5. Regulation functions.

There is also an internal main switch as a setting. Both must be "OFF" before any adjustment is made.

The modules used are selected in the design phase.

For the example shown we use the following modules: AK-PC 730 controller

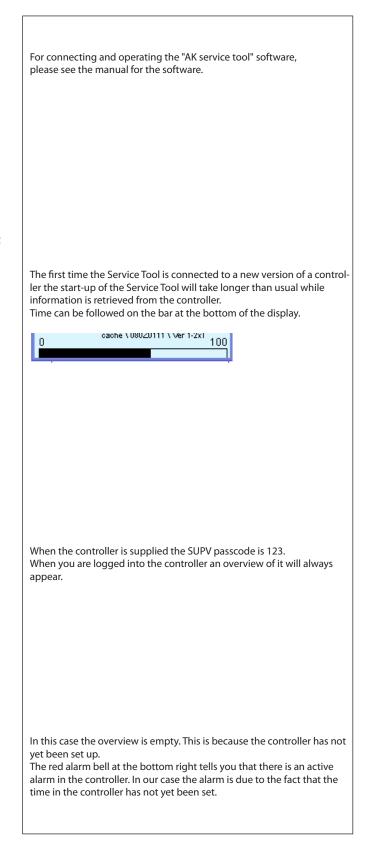

- AK-XM 102B digital input module
- AK-OB 003A analog output module

Configuration

Connect PC or PDA

PC or PDA with the program "Service Tool" is connected to the controller.

The controller must be switched on first and the LED "Status" must flash before the Service Tool programme is started.

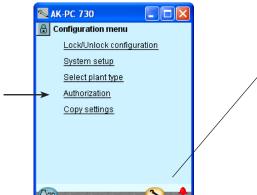

Start Service Tool programme

Login with user name SUPV

Select the name **SUPV** and key in the passcode.

📉 AK-PC 730)		
🔒 01:004 AK	-PC 73	Overvi	ew 💌
Overview		\in	•
Temp	Ref	Status	Alarm
		A 3	

Dantoss


Change language

1. Go to Configuration menu


Press the orange setup button with the spanner at the bottom of the display.

2. Select Authorization

3. Change setting for the user 'SUPV'

4. Select language

🕾 User dialog 🛛 🛛 🔀		
User setting	s	
User name	SUPV	-
User ID	3	
Access code	123	
Language	English 🔽]
User profile		
Unit	English dansk	
HVAC		-
OK	Cancel	

5. Carry out a new login with the user name SUPV —

When the controller is supplied it has been set to show English texts on the Service Tool displays. We will now change these texts to another language.

You will use this button again and again whenever you want to get to this display.

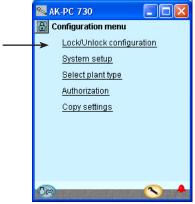
On the left-hand side are all the functions not shown yet. There will be more here the further into the setup we go.

Press the line **Authorization** to get to the user setup display.

Mark the line with the user name **SUPV**. Press the button **Change**

Opposite the field **Language** select the required language. Press the button **OK** to save the new settings.

To activate the display of the texts in the required language you must carry out a new login to the controller with the user name SUPV and the relevant passcode. You will access the login display by pressing the padlock at the top left corner of the display.



Unlock the configuration of the contollers

1. Go to Configuration menu

2. Select Lock/Unlock configuration

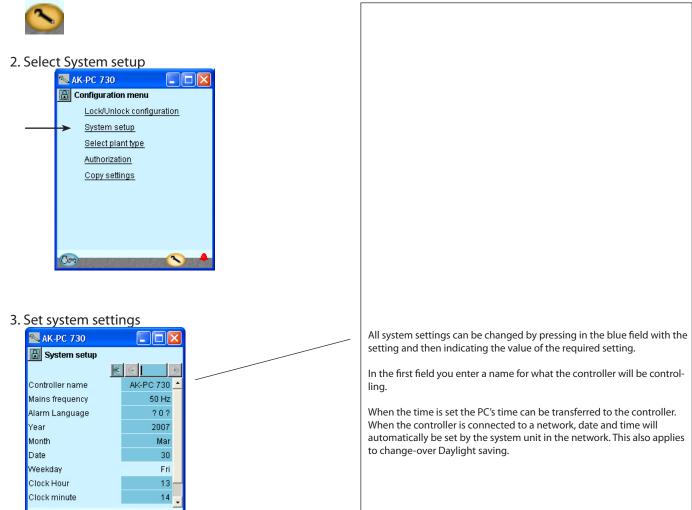
3. Select Configuration lock

Press the blue field with the text **Locked**

📉 AK-PC 730	
🔠 Lock/Unlock confi	guration
	€ - +
Main Switch	OFF
Configuration lock	Locked

4. Select Unlocked

Select Unlocked and press OK.



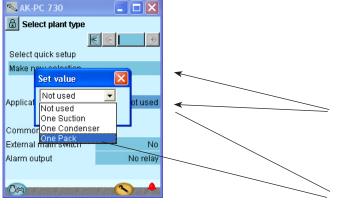
The controller can only be configured when it is unlocked. It can only be adjusted when it is locked.

The values can be changed when it is locked, but only for those settings that do not affect the configuration.

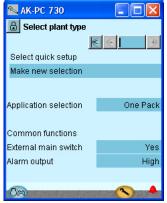
System setup

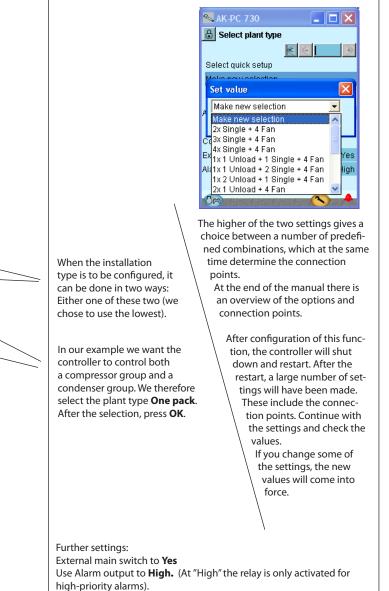
1. Go to Configuration menu

Danfoss


Die

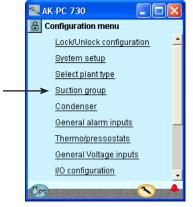
Set plant type


- 1. Go to Configuration menu
- 2. Select plant type



3. Set plant type

4. Set Common functions



Danfoss

Set control of compressors

1. Go to Configuration menu

2. Select Suction group

3. Set values for the reference

🛰 AK-PC 730	
🔠 Suction Group	
Po Reference	$\epsilon \epsilon$
Reference mode	SP+Ext. ref.+Night
Setpoint	-15.0 °C
Offset via Ext. Ref.	No
Offset filter	300 s
Night select via DI	No
Night offset	0.0 K
Max reference	80.0 °C
Min reference	-80.0 °C
07	N

Press the +-button to go on to the next page

4. Set values for capacity control

Press the +-button to go on to the next page

The configuration menu in the Service Tool has changed now. It shows the possible settings for the selected plant type.

There are several pages, one after the

In our example we select the settings:

The settings are shown here in the display.

- Suction set point = -15°C

other.

The black bar in this field tells you which of the pages is currently displayed. Move between the pages using the + and - buttons.

In our example we select:

- 3 compressors
- Pctrl from the low-pressure circuit to the control sensor
- Refrigerant = R404A and R744
- Equalisation of working hours
- etc.

The settings are shown here in the display.

High-pressure/low-pressure coordination: With the setting "High-Pressure Coordination" both an input signal from the low-pressure circuit and an output signal from the low-pressure circuit are reserved.

Further down in the screen, the function can be activated which defines liquid injection in the heat exchanger.

Not all compressors can have their speed adjusted. If there is any doubt, contact your compressor supplier.

If you want to know more about the different configuration options, they are listed below. The number refers to the number and picture in the column on the left. The screen only shows the settings and readings that are required for a given set-up.

3 - Reference mode

Displacement of suction pressure as a function of external signals 0: Reference = set reference + night offset + offset from external 0-10 V signal 1: Reference = set reference + offset from P0 optimization Setpoint (-80 to +30°C) Setting of required suction pressure in °C Offset via Ext. Ref Select whether a 0-10V external reference override signal is required Offset at max input (-100 to +100 °C) Displacement value at max. signal (10) Offset at min input (-100 to +100 °C) Displacement value at min. signal (0 V) Offset filter (10 - 1800 Sec) Here you can set how quickly the reference must become effective. Night Offset via DI Select whether a digital input is required for activation of night operation. Night operation can alternatively be controlled via internal weekly schedule or via a network signal Night Offset (-25 to +25 K) Displacement value for suction pressure in connection with an active night setback signal (set in Kelvin) Max reference (-50 to +80 °C)

Max. permissible suction pressure reference Min reference (-80 to +25 °C) Min. permissible suction pressure reference 4 - Compressor application Select the compressor application required No. of compressors Set number of compressors No. of unloaders Set number of unloader valves Control sensor Po: Suction pressure Po is used for control S4: Media temperature S4 is used for control Pctrl: Control pressure from the low-pressure circuit for cascade Po refrigerant type Select refrigerant type Po refrigerant factors K1, K2, K3

Only used if "Po refrigerant type" is set to custom (contact Danfoss for information) Pctrl refrigerant type

Select refrigerant type

Pctrl refrigerant factors K1, K2, K3 Only used if "Pctrl refrigerant type" is set to custom (contact Danfoss for information) Step control mode

Select coupling pattern for compressors Sequential: Compressors are cut in/out in strict accordance with compressor number (FILO) Cyclic: Runtime equalisation between compressors (FIFO)

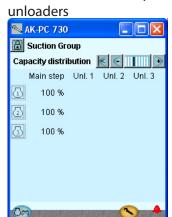
Best fit: Compressors are cut in/out in order to make the best possible fit to actual load **Low-pressure/high-pressure coordination**

Control methods between low pressure and high pressure for cascade

High-pressure release: High-pressure control. The controller must connect to a relay so that a signal can be sent to the controller in the low-pressure circuit

LT Release: LT-control. The controller must receive a signal from the controller in the high-pressure circuit.

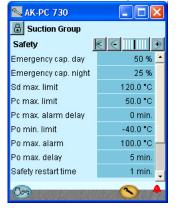
HT Coord: HT-control. A signal must both be recei-


Dantoss

5. Set values for capacity

of the compr	essors
📉 АК-РС 730	
🔒 Suction Group	
Compressors	$\epsilon \in \mathbb{R}$
Nominel Ca	ap. Unloader
30.0 k	W None
15.0 k	W None
3 15.0 k	W None
0m	

Press the +-button to go on to the next page


6. Set values for main step and any

€

Press the +-button to go on to the next page

7. Set values for safe operation

Press the +-button to go on to the next page

- ved and sent. In our example we select: - Speed-controlled compressor of 30 kW (compressor 1) - two compressors of 15 kW The example settings are shown here in the display. In our example there are no unloaders and hence no changes. In our example we select: - Safety limit for discharge temperature = 120°C - Safety limit for high condensing pressure = 50°C - Safety limit for low suction capacity pressure = -35°C - Alarm limit for high suction pressure = $-5^{\circ}C$ Alarm limit for min. and max. superheat, respectively = 5 and 35 K. Especially for cascade control the delay of a "Pc max. alarm" can be Unloader an advantage.
 - LT Coord: LT-control. A signal must both be received and sent. LT-Comp.request delay LT-control. Delay on output signal to HT. LT Comp. release delay LT-control. Delay on input signal from HT HT-Comp.reuest delay HT-Control. Delay on input signal from LT HT Comp. frigiv. Fors HT-control. Delay on output signal to LT Injection heat exchanger Selects whether an output signal is to be sent for start/stop of liquid injection in a cascade heat exchanger Pump down Select whether a pump down function is required on the last running compressor **Pump down limit** (-80 to +30 °C) Set the actual pump down limit for the last compressor **VSD min speed** (0.5 – 60.0 Hz) Min. speed where the compressor must cutout VSD start speed (20.0 - 60.0 Hz) Minimum speed for start of Variable speed drive (Must be set higher than "VSD Min. Speed Hz") **VSD max speed** (40.0 – 120.0 Hz) Highest permissible speed for the compressor motor VSD safety monitoring Select this if input for monitoring of the frequency converter is required Load shed limits Select how many load shedding inputs are required Load shed limit 1 Set max capacity limit for load shed input 1 Load shed limit 2 Set max capacity limit for load shed input 2 Override limit Po Any load below the limit value is freely permitted. If the P0 exceeds the value, a time delay is started. If the time delay runs out, the load limit is cancelled **Override delay 1** Max. time for capacity limit, if P0 is too high **Override delay 2** Max. time for capacity limit, if P0 is too high Advanced control settings Select whether the advanced capacity control settings should be visible Kp Po (1.0 - 10.0) Ampliflication factor for P0 regulation Min. capacity change (0 - 100 %) Set the minimum capacity change needed before the capacity distributor connects or disconnects compressors Minimize cycling The control zone may vary for connections and disconnections. See Section 5. Initial start time (15 – 900 s) The time after start-up where the cut-in capacity is limited to the first compressor step. Unloading mode Select whether one or two capacity controlled compressors are allowed to be unloaded at the same time at decreasing 5 - Compressors In this screen the capacity distribution between the compressors is defined. Capacities that need to be set depend upon the "compressor application" and "Step control mode" that has been selected. Nominal capacity (0.0 - 100000.0 kW) Set the nominal capacity for the compressor in question. For compressors with variable speed drive the nominal capacity must be set for the mains frequency (50/60 Hz) Number of unload valves for each compressor (0-3) 6 - Capacity distribution The installation is dependent on the combination of compressors and coupling pattern. Main step

Set the nominal capacity of the main step (Set the percentage of the relevant compressor's nominal capacity) 0 - 100%.

of compressor		Unload Readout of the capacity on every unloading 0-100%.
	In our example we use: - Common high-pressure pressure control for all compressors	7 - Safety Emergency cap. day
Yes No	- One general safety monitoring unit for each compressor	The desired cut-in capacity for daily use in the case of emer- gency operations resulting from error in the suction pressure sensor/ media temperature sensor.
No No No	(The remaining options could have been selected if specific safety controls for each	Emergency cap. night The desired cut-in capacity for night operations in the case of emergency operations resulting from error in the suction pressure sensor/ media temperature sensor.
Yes	compressor had been required).	Sd max limit Max. value for discharge gas temperature 10 K below the limit, the compressor capacity should be reduced and the entire condenser capacity will be cutin. If the limit is exceeded, the entire compressor capacity will
tton to go on to the		be cutout Pc Max limit Maximum value for the condenser pressure in °C 3 K below the limit, the entire condenser capacity will be
me for compres-		cutin and the compressor capacity reduced. If the limit is exceeded, the entire compressor capacity will be cutout.
	Set min. OFF-time for the com- pressor relay	Pc Max delay Time delay for the alarm Pc max P0 Min limit Minimum value for the suction pressure in °C
I time Recycle t	Set min. ON-time for the com- pressor relay Set how often the compressor is allowed to start	If the limit is reduced, the entire compressor capacity will be cutout. P0 Max alarm
i min. 6 min.		Alarm limit for high suction pressure P0 P0 Max delay Time delay before alarm for high suction pressure P0. Safety restart time
ımin. 6 min.		Common time delay before restarting the compressor. (Applicable to the functions: "Sd max. limit", Pc max. limit" and "P0 min. limit). SH Min alarm
		Alarm limit for min. superheat in suction line. SH Max alarm Alarm limit for max. superheat in suction line. SH alarm delay
tton to go on to the		Time delay before alarm for min./max. superheat in suction line.
afety cutouts		8 - Compressor safety Common safety Choose whether an overall, common safety input for all compressors is desired. If the alarm is activated, all compres-
	The settings only apply to the relay that cuts the compressor	sors will be cutout. Oil pressure etc Define here whether this type of protection should be con-
Restart delay 5 min.	motor in and out. They do not apply to unloaders.	nected. For "General", there is a signal from each compressor.
5 min. 5 min.	If the restrictions overlap, the controller will use the longest restriction time.	9 - Minimum operation times Configure the operation times here so "unnecessary opera- tion" can be avoided. Restart time is the time interval between two consecutive starts.
<u>~</u> ◆		10 - Safety timer Cutout delay The time delay resulting from drop-out of automated safety measures and until the compressor-error is reported. This setting is common for all safety inputs for the relevant compressor.
tton to go on to the		Restart delay Minimum time that a compressor should be OK after a safety cut-out. After this interval it can start again.
tions	In our example we do not use these functions.	11 - Misc. functions Injection On Select this function if a relay must be reserved for the
No No		function. (The function must be wired to controllers with expansion valves in order to close liquid injection for the safety cut-out of the last compressor.) Liq. inj suction line Select the function if a liquid injection is required in the
		suction line in order to keep the discharge gas temperature down.

8. Set monitoring c

-	
📉 АК-РС 730	
🔒 Suction Group	
Compressor safety	
Common safety	Yes
Oil pressure safety	No
Over current safety	No
Motor protect. safety	No
Disch. Temp. safety	No
Disch. Press. safety	No
General safety	Yes
(Circ)	<u>s</u> +

Press the +-butt + next page

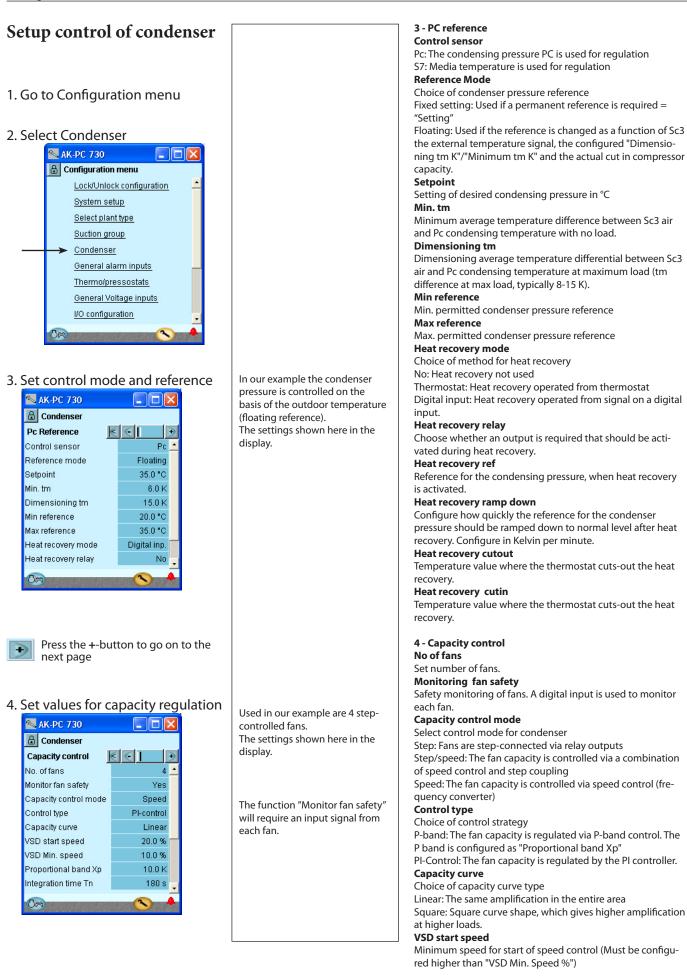
9. Set operation tin

Press the +-butte next page

10. Set times for sa

Ð

🕾 AK-PC 730	
🔒 Suction Group	
Safety timers	< <
Cutout delay	Restart delay
0 min.	5 min.
0 min.	5 min.
3 0 min.	5 min.
0m	

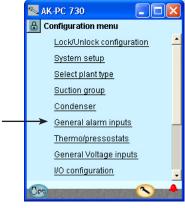

Press the +-butt next page

11. Set Misc. function

📉 АК-РС 730	
🔠 Suction Group	
Misc. parameters	$\epsilon \in \square \square $
Ctrl. of Injection ON	No
Liq. inj. suction line	No

Ð

Danfoss


Continues

Danfoss

Setup general alarm inputs

1. Go to Configuration menu

2. Select General alarm inputs

3. Define the required alarm

unctions	
📉 AK-PC 730	
🔒 General alarn	n input
	€
No.of inputs	1
DI input 1	
DI 1 Name	Receiver alarm
DI 1 Delay	5 min.
DI 1 Alarm text	Liquid level to low
0a	

In our example we select one alarm function for monitoring the liquid level in the receiver. We have subsequently selected a name for the alarm function and for the alarm text.

Continued

VSD min Speed

Minimum speed whereby speed control is cut-out (low load). **Proportional band Xp** Proportional band for P/PI controller

Integration time Tn Integration time for PI controller

VSD safety monit.

Choice of safety monitoring of frequency converter. A digital inlet is used for monitoring the frequency converter.

Capacity limit at night

Setting of maximum capacity limit during night operations. Can be used to limit fan speed at night in order to limit the noise level.

Monitor Air flow

Choose whether monitoring is required of the condenser's air flow via an intelligent error-detection method. Monitoring requires the use of a Sc3 outer temperature sensor, which must be fitted by the condenser's air inlet.

FDD setting

Set error-detection function

Tuning: The controller makes an adjustment to the condenser concerned. Note that tuning should only be done when the condenser is operating under normal operating conditions.

ON: Tuning is completed and monitoring has commenced. OFF: Monitoring is cut out.

FDD sensitivity

Set the sensitivity of error-detection on the condenser's air flow. Must only be changed by trained staff.

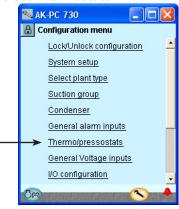
Air flow tuning value

Actual tuning values for air flow.

3 - General alarm input

This function can be used to monitor all kinds of digital signals.

No. of inputs


Set the number of digital alarm inputs

- Adjust for each input
- Name
- Delay time for DI alarm (common value for all)
- Alarm text

Danfoss

Setup separate thermostat functions

- 1. Go to Configuration menu
- 2. Select Thermostats

3. Define the required thermostat function

📉 АК-РС 730	
🔒 Thermostats	
	€ € 🛛 🖻
No.of thermostats	1 📥
Thermostat 1	
Thermostat name	Thermostat 1
Select sensor	Saux1
Actual temp.	***** °C
Actual state	OFF
Cut out temp.	22.0 °C
Cut in temp.	25.0 °C
High alarm limit	35.0 °C 🖕
0m	S 4

In our example we select one termostat function for monitoring the plant room temperature.

We have subsequently entered a name for the function.

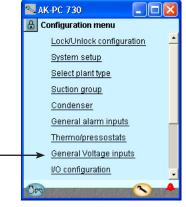
€

Via the +- button you can move to similar settings for the pressure control functions. (Not used in the example)

3 - Thermostats

The general thermostats can be used to monitor the temperature sensors that are used, as well as 4 extra temperature sensors. Each thermostat has a separate outlet to control external automation. No. of thermostats Set the number of general thermostats. For each thermostat adjust Name • Which of the sensors is used Actual temp. Temperature measurement on the sensor that is attached to the thermostat Actual state Actual status on the thermostat outlet Cut out temp. Cut-out value for the thermostat Cut in temp. Cut-in value for the thermostat High alarm limit High alarm limit Alarm delay high Time delay for high alarm Alarm text high Indicate alarm text for the high alarm Low alarm limit Low alarm limit Alarm delay low Time delay for low alarm Alarm text low Indicate alarm text for low alarm

4 - Pressostats


Settings likes the thermostats

Setup separate voltage functions

1. Go to Configuration menu

2. Select General Voltage inputs

(In our example we do not use this function).

3. Define the required names and values attached to the signal

🛰 AK-PC 730	
🔒 Voltage inputs	
	€ € €
No.of Voltage inputs	1 📥
Voltage input 1	
Name	Gas detector
Actual value	*****
Actual state	OFF
Min. Readout	0.0
Max. Readout	10,000.0
Cut out	-1.0 —
Cut in	101.0 🖕
0m	N

In our example we use the function for a gas detector. The measuring range is from 0-10 V, which corresponds to 0-10000 ppm.

Further down on the screen the following can be set:

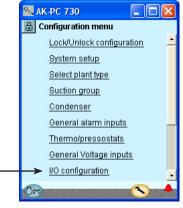
- Alarm limit at 9000.
- Alarm text

(The voltage range is selected during the I/O setup).

The values "Min. and Max. Readout" are your settings representing the lower and upper values of the voltage range.

For each voltage input defined the controller will reserve a relay output in the I/O setup. It is not necessary to define this relay if all you require is an alarm message via the data communication.

In the example we do not use the relay, so we set the module and point number at 0-0 when we get to the I/O set-up.


3 - Voltage inputs The general volt inlet can be used to monitor external voltage signals. Each volt inlet has a separate outlet to control external automatic controls. No. of voltage inp. Set the number of general voltage inputs, specify 1-5: Name Actual value = read-out of the measurement Actual state = read-out of outlet status Min. readout State read-out values at mininum voltage signal Max. readout State read-out values at maximum voltage signal Cutout Cut-out value for outlet (scaled value) Cutin Cut-in value for outlet (scaled value) **Cutout delay** Time delay for cut-out Cut in delay Time delay for cut-in Limit alarm high High alarm limit Alarm delay high Time delay for high alarm Alarm text high Set alarm text for high alarm Limit alarm low Low alarm limit Alarm delay low Time delay for low alarm Alarm text low Indicate alarm text for low alarm

Danfoss

Configuration of inputs and outputs

1. Go to Configuration menu

2. Select I/O configuration

3. Configuration of Digital outputs

Press the +-button to go on to the next page

4. Setup On/off input functions

📉 AK-PC 730 🔒 1/0 configuration **Digital Inputs** \leq Ð Mod. Pt Active at 2 - 1 Open Alarm / Function General safety Compressor 2: 2 - 2 Open General safety Compressor 3 General safety Open 3 2 -2 -2 -Fan 1 safety 5 6 7 8 Open Fan 2 safety Open Fan 3 safety Open 2 -0 -Fan 4 safetv Open Heat recovery 0 Clos. 0 Receiver alarm 0 -Open

Press the +-button to go on to the next page

The following displays will depend on the earlier definitions. The displays will show which connections the earlier settings will require. The tables are the same as shown earlier.

- Digital outputs
- Digital output
 Digital inputs
- Analog outputs
- Analog output
 Analog inputs

Load	Output	mo- dule	Point	Active at
Compressor 1 (VSD start)	DO1	1	12	ON
Compressor 2	DO2	1	13	ON
Compressor 3	DO3	1	14	ON
Room fan (thermostat 1)	DO4	1	15	ON
Fan (VSD start)	DO5	1	16	ON
Start of liquid injection	DO6	1	17	ON
Signal to LT circuit (HT Comp. release)	D07	1	18	ON
Alarm	DO8	1	19	OFF !!!

It is inverted so that there will be an alarm if the supply voltage to the controller fails.

We set up the controller's digital outputs by keying in which module and point on this module each one of these has been connected to. We furthermore select for each output whether the load is to be active when the output is in pos. **ON** or **OFF**. (At the setting 0-0 the output is not used.)

Function	Input	Mo- dule	Point	Active at
Receiver level on/off	AI1	1	1	Open
Signal to from LT(HT comp. request)	AI3	1	3	Closed
Extern main switch	Al6	1	6	Closed
Compressor 1 Gen. Safety	DI1	2	1	Open
Compressor 2 Gen. Safety	DI2	2	2	Open
Compressor 3 Gen. Safety	DI3	2	3	Open
All compressors common safety	DI4	2	4	Open
Fan 1 safety	DI5	2	5	Open
Fan 2 safety	DI6	2	6	Open
Fan 3 safety	DI7	2	7	Open
Fan 4 safety	DI8	2	8	Open

3 - Outputs The possible functions are the following: Comp. 1 Unloader 1-1 Unloader 1-2 Unloader 1-3 Comp. 2-4 HT Comp. release LT Comp. request Injection heat exchanger Injection suction line Injection ON Fan 1 / VSD Fan 2 - 6 Heat recovery Alarm Thermostat 1 - 5 Pressostat 1 - 5 Volt input 1 - 5

4 - Digital inputs

The possible functions are the following: Ext. Main switch Night setback Load shed 1 Load shed 2 LT Comp. Release HT Comp. Request All compressors: Common safety Comp. 1 Oil pressure safety Over current safety Motor protect. safety Disch. temp. safety Disch. press. safety General safety VSD comp. Fault Comp. 2-4 do

Fan 1 safety Fan 2 safety Fan 3 safety Fan 4 safety Fan 5 safety VSD cond safety Heat recovery DI Alarm 1 DI alarm 2-10...

We set up the controller's digital input functions by keying in which module and point on this module each one of these has been connected to. We furthermore select for each output whether the function is to be active when the output is in pos. **Closed** or **Open**. Open has been selected here for all the safety circuits. This means that the controller will receive signal under normal operation and register it as a fault if the signal is interrupted.

5. Configuration of Analog

outputs

-	-1				
	📉 AK-PC 730				
	🔓 I/O configuration	1			
	Analog outputs	K	ϵ	Ð	
	Function Mo	d.	Pt	Туре	
	Speed compressor	1	- 24	0 -10 V	
	Speed condenser	1	- 25	0-10 V	

Press the +-button to go on to the next page

6. Configuration of Analog Input signals

input sign					
📉 AK-PC 730					
🔒 1/0 configuration					
Analog Inputs			<	€ €	
Sensor N	lod.		Pt	Туре	
Pctrl pressure	1	-	- 7	MBS2050	
Po suction pres.	1	-	10	AKS32R	
Ss suction gas	1	-	9	Pt 1000	
Sd disch. gas	1	-	8	Pt 1000	
Pc cond. pres.	1	-	11	AKS32R	
Sc3 Air on	1	-	5	Pt 1000	
Saux 1	1	-	2	Pt 1000	
Voltage input 1	0	-	0	0-10 V	
-					

Function	Output	Module	Point	Туре
Speed control of compres-	AO1	1	24	0-10 V
sor	AUT		24	0-10 V
Speed control of fans	AO2	1	25	0-10 V

We set up the analog outputs for control of the compressor speed.

Sensor	Input	Module	Point	Туре
Thermostat sensor in plant room - Saux1	AI2	1	2	Pt 1000
Gas detector (Volt1)	Al4	1	4	0-10 V
Outdoor temperature - Sc3	AI5	1	5	Pt 1000
Pressure signal in LT-circuit -Pctrl	AI7	1	7	MBS2050
Disch. gas temperature - Sd	AI8	1	8	Pt 1000
Suction gas temperature - Ss	A19	1	9	Pt 1000
Suction pressure - P0	AI10	1	10	AKS32-12
Condensing pressure - Pc	AI11	1	11	AKS32-34

Danfoss

5 - Analog outputs

The possible signals are the following: 0 -10 V 2 - 10 V 0 -5 V 1 - 5V

6 - Analog inputs

The possible signals are the following:

Temperature sensors: • Pt1000

• PTC 1000

Pressure transmitters:

• AKS 32, -1 – 6 Bar • AKS 32R, -1 – 6 Bar • AKS 32R, -1 – 9 Bar

• AKS 32R, -1 – 9 Bar3

• AKS 32, - 1 – 12 Bar

• AKS 32R, -1 – 12 Bar

• AKS 32, - 1 – 20 Bar • AKS 32R, -1 – 20 Bar

• AKS 32R, -1 – 20 Bar • AKS 32, -1 – 34 Bar

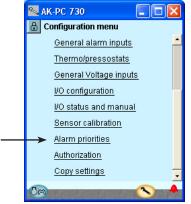
• AKS 32, - 1 – 34 Bar

• AKS 32, - 1 – 50 Bar

• AKS 32R, -1 – 50 Bar

• MBS 2050, 0 – 60 Bar

• MBS 2050, 0 – 160 Bar


S4 Cold brine Pctrl Po suction pres. Ss suction gas Sd disch. temp. Pc Cond. Pres. S7 Warm brine Sc3 air on Ext. Ref. Signal • 0 – 5 V, • 0 - 10 V Heat thermostat Saux 1 - 4 Paux 1 - 3 Voltage input 1 - 5 • 0 -5 V, • 0 - 10 V, • 1 – 5 V, • 2 – 10 V

<u>Danfoss</u>

Set alarm priorities

1. Go to Configuration menu

2. Select Alarm priorities

3. Set priorities for Suction group

📉 AK-PC 730	
🔠 Alarm priorites	
Suction A 🔣	€ €
Control mode	Low 📩
Low suction pressure Po	Low
High suction pressure Po	High
High discharge temp Sd	High
Low superheat Ss	Medium
High superheat Ss	Medium
Po sensor error	High
P ctrl sensor error	High —
Ss sensor error	High 🖕
Om	N

Press the +-button to go on to the next page

4. Set alarm priorities for condenser

 bee alarini prioritei		
🛰 АК-РС 730		
🔠 Alarm priorites		
Condenser A 🔣	∈ I ∋	
Control Mode	Low	
High cond. pressure Pc	High	
Pc sensor error	High	
Sc3 sensor error	High	
Fan 1 safety cutout	Medium	
Fan 2 safety cutout	Medium	
Fan 3 safety cutout	Medium	
Fan 4 safety cutout	Medium	
0m	N	

Press the +-button to go on to the next page

Very many functions have an alarm connected.

Your choice of functions and settings has connected all the relevant alarms that are current. They will be shown with text in the three pictures.

All alarms that can occur can be set for a given order of priority: • "High" is the most important one

• "Log only" has lowest priority

"Disconnected" gives no action

The interdependence between setting and action can be seen in the table.

Setting	Log	Ala	rm relay s	Net-	AKM-	
		Non	High	Low - High	work	dest.
High	Х		Х	Х	Х	1
Medium	Х			Х	Х	2
Low	Х			Х	Х	3
Log only	Х					
Discon- nected						

The first alarms for the suction groups are shown here.

Further down in the display the priorities for the compressors' safety circuits are set.

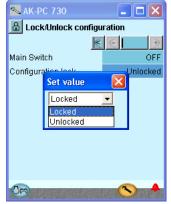
Common safety circuit is set to "High". And the five general safety circuits are set to "Medium".

In our example we select the settings shown here in the display

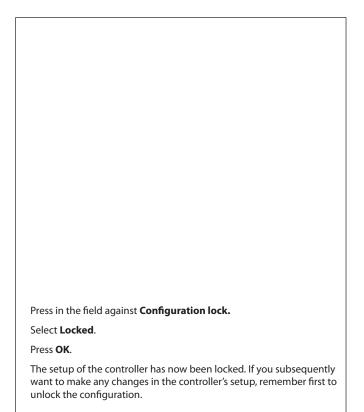
<u>Danfoss</u>

5. Set alarm priorities for thermostat and extra Digital signals

signais	
📉 AK-PC 730	
🔠 Alarm priorites	
Common	€ () €
Main Switch	Medium
Saux1 sensor error	High
Thermostat 1	
High temp. alarm	Low
Low temp. alarm	Low
Gas detector	
High alarm	Low
Low alarm	Low
Receiver alarm	High
0m	S +



Lock configuration


- 1. Go to Configuration menu
- 2. Select Lock/Unlock configuration

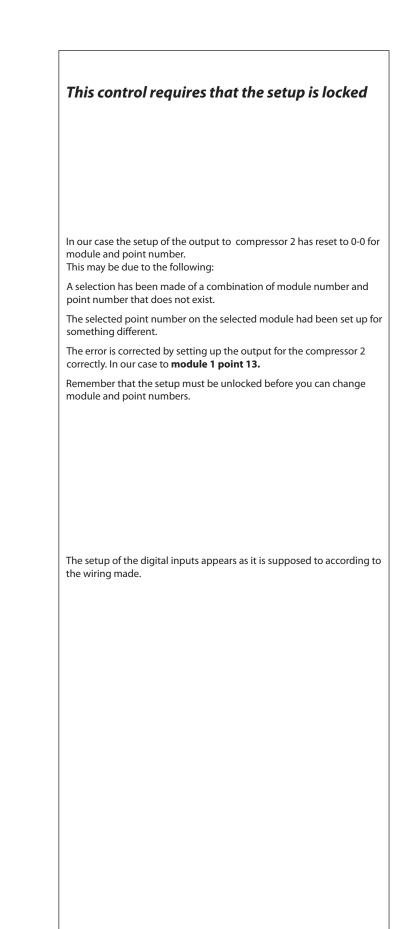
3. Lock Configuration

The controller will now make a comparison of selected functions and define inputs and outputs. The result can be seen in the next section where the setup is controlled.

Check configuration

- 1. Go to Configuration menu
- 2. Select I/O configuration

Genera	LVoltage i	nnute			
	General Voltage inputs				
	iguration				
0m		<u>S</u>			
3. Check configu	uratio	n of Dig	gital Outputs		
📉 AK-PC 730	[
🔓 I/O configuration	1				
Digital outputs	\leq				
Load	Mod. Pt	Active at			
Compressor 1	1 - 12	ON			
Compressor 2	0-0	ON			
Compressor 3	1 - 14	ON			
HT Comp. Release	1 - 18	ON			
Liq. inject heat exch.	1 - 17	ON			
Fan 1/VSD	1 - 16	ON			
Alarm	1 - 19	OFF			
Thermostat 1	1 - 15	ON			
Gas detector	0-0	ON			
0m		<u>></u>			
	Real Property lies in the				

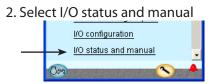

Press the +-button to go on to the next page

4. Check configuration of Digital Inputs

📉 AK-PC 730				×
🔒 I/O configuration	n			
Digital Inputs	<	ϵ		
Alarm / Function	Mod.	Pt	Active a	at
Ext. Main Switch	1 -	6	Clos	-
HT Comp. Request	1 -	3	Clos	
All compressors:				
Common safety	2 -	4	Open	
Compressor 1:				
General safety	2 -	1	Open	
Compressor 2:				
General safety	2 -	2	Open	
Compressor 3:				
General safety	2 -	3	Open	
Fan 1 safety	2 -	5	Open	-
100		-	2	
				1900

Press the +-button to go on to the next page

Danfoss


5. Check configuration of Analog Outputs The setup of the analog outputs appears as it is supposed to according 📉 AK-PC 730 to the wiring made. 🐻 I/O configuration Ð Analog outputs \in Function Function Mod. Pt Type Speed compressor 1 - 24 0 -10 V Speed condenser 1 - 25 0 -10 V Press the +-button to go on to the next page 6. Check configuration of Analog Inputs The selected module and point numbers for Sc3 Air on are shown in a 📉 AK-PC 730 red field instead of a blue one. 🔒 1/0 configuration This is due to the fact that this input has been set up, but that the setup has later been changed so that the outdoor temperature sensor Sc3 is $\overline{}$ Analog Inputs \leq Sensor Mod. Pt Type P ctrl. pressure 1 - 7 MBS2050... no longer to be used. For instance by changing the Pc reference selection for condenser A from Floating to Fixed setting. Po suction pres. Ss suction gas 1 - 10 AKS32R-. The problem is corrected by setting Sc3 air on to module number 0 1 -1 -9 Pt 1000 and point number 0. Sd disch. gas 8 Pt1000 1 - 11 1 - 11 1 - 5 1 - 2 (IN THIS EXAMPLE WE RETAIN SETTINGS 1 AND 5. The wrong setting has Pc cond. pres. AKS32R-.. . Sc3 Air on Pt 1000 only been shown for your information). Saux1 Pt 1000 Voltage input 1 4 0-10 V

Remember that the setup must be unlocked before you can change module and point numbers.

Danfoss

Check of connections

1. Go to Configuration menu

3. Check Digital Outputs

📉 AK-PC 730				
🛗 1/0 status and manual				
Digital outputs	€ € III €			
Name / Load	Mode value			
Compressor 1	AUTO - OFF			
Compressor 2	AUTO - OFF			
Compressor 3	AUTO - OFF			
HT Comp. Release	AUTO - OFF			
Liq. Inject heat exch.	AUTO - OFF			
Fan 1/VSD	AUTO - OFF			
Alarm	AUTO - OFF			
Thermostat 1	AUTO - OFF			
Gas detector	AUTO - OFF			
0A				

)


Press the +-button to go on to the next page

4. Check Digital Inputs

📉 AK-PC 730					
🔓 I/O status and manual					
Digital Inputs	K C II D				
Name / Alarm	Mode value				
Ext. Main Switch	AUTO - OFF 🔺				
HT Comp. Request	AUTO - OFF				
All compressors:					
Common safety	AUTO - ON				
Compressor 1:					
General safety	AUTO - ON				
Compressor 2:					
General safety	AUTO - ON				
Compressor 3:					
General safety	AUTO - ON 🚽				
Fan 1 safety	AUTO - ON 🖵				
100					

•

Press the +-button to go on to the next page

Danfoss

5. Check Analog outputs

💊 AK-P	C 730	-		
🔒 l/0 s	tatus and m	anual		
Analog (outputs	\leq	•	
Name		Mode	value	
Compres	sor speed	AUTO -	0.0 %	
Condens	Set value		0.0 %	
	MAN			
	OK Cancel			

🔊 AK	-PC 730			
🔒 I/O status and manual				
Analo	g Outputs	\leq	•	
Name		Mode v	alue	
Comp	Set value	×	.0 %	
Conde	100.0	-	.0 %	
	50	%		
	0.0	-		
	ОК	Cancel		

6. Put the control of the output voltage back to automatic

matic	
📉 АК-РС 730	
🔒 I/O status and m	anual
Analog Outputs	K C II 🗩
Name	Mode value
Compressor speed	AUTO - 0.0 %
Condenser speed	AUTO - 0.0 %

Press the +-button to go on to the next page

7. Check Analog inputs

📉 AK-PC 730	
📕 I/O status and i	nanual
Analog Inputs	€ ∈ 🛛 🗩
Name/sensor	value
Po suction temp.	***** °C
Ss suction gas	***** °C
Sd disch. gas	12.9 °C
Pc cond. temp.	****** °C
Pctrl temp.	-10.8 °C
Sc3 Air on	***** °C
Saux 1	***** °C
Voltage input 1	*****
0m	S +

Set Control of output voltage to manual Press in the **Mode** field.

Select MAN.

Press **OK**.

Press in the **Value** field Select for example **50%**.

Press OK.

On the output you can now measure the expected value: In this example 5 volts

Example of the connection between a defined output signal and a manual set value.

Definition	Setting		
	0 %	50 %	100 %
0 - 10 V	0 V	5 V	10 V
1 - 10 V	1 V	5.5 V	10 V
0 - 5 V	0 V	2.5 V	5 V
2 - 5 V	2 V	3.5 V	5 V

Check that all sensors show sensible values.

In our case we have no value for the suction gas temperature Ss and the two sensors. This may be due to the following:

- The sensor has not been connected.
- The sensor is short-circuited.
- The point or module number has not been set up correctly.
- The configuration is not locked.

Danfoss

Check of settings

1. Go to the overview

N	AK-PC 730	0		
B	01:004 AK	-PC 73 🔻	Overvie	ew 💌
Ove	rview		\in	
	Temp	Ref	Status	Alarm
5	-10.7 °C	-15.0 °C	Stopped	i -
A	-133.8 °C	35.0 °C	Stopped	I
8	Thermosta	ats_		
🔫 Voltage inputs				
General alarm inputs				
Or			<u>۵ (</u>	

2. Select suction group

3. Move on through all the individual displays for the suction group

Change displays with the +- button. Remember the settings at the bottom of the pages – the ones that can only be seen via the "Scroll bar".

4. Safety limits

📉 AK-PC 730			
Suction			•
Safety monitoring	<	E III 🕒	\geq
	P ctrl	-10.7 *	С
	Po	*****	С
	Ρc	*****	С
Sd		12.9 °C	•
Ss		***** °C	
Superheat		***** K	
Sd max. limit		120.0 °C	
Pc max. limit		50.0 °C	-
Pc max. alarm dela	iy	0 min.	
Po min. limit		-40.0 °C	-
0 1 1 A			

5. Go back to the overview

6. Select condenser group

Before the control starts, we check that all the settings are as they should be.

The overview display will now show one line for each of the general functions. Behind each icon there is a number of displays with the different settings. It is all these settings that have to be checked.

The last page contains safety limits and restart times.

Danfoss

7. Move on through all the individual displays for the condenser group.

Change displays with the +- button. Remember the settings at the bottom of the pages – the ones that can only be seen via the "Scroll bar".

8. Safety limits

9. Go back to the overview and Move on to the thermostat group

Check the settings

10. Go back to the overview and Move on to the voltage inputs

Check the settings.

11. Go back to the overview and on to the general alarm inputs

Check the settings.

12. The controller setup has been completed.

The last page contains safety limits and restart times.

Schedule function

1. Go to Configuration menu

2. Select schedule

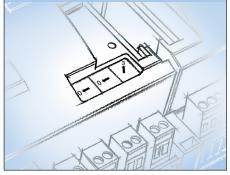
3. Setup schedule

🔊 Al	(-PC	730				-		\mathbf{X}
0	1:004	AK-PC	73	-] [Overvi	iew	•
Day/Night Schedule 💽 📘 💽								
Status:	Day					d shif		
0	24	68	10	12	14	16 18	20 22	2 24
Mon			•					
Tue			•					
Wed			•					
Thu								
Fri	****	****						
Sat								
Sun								
Hol								
Om		(Y)	L		Ω	00		

Before regulation is started we will set the schedule function for the night setback of the suction pressure. In other cases where the controller is installed in a network with one system unit, this setting may be made in the system unit which will then transmit a day/night signal to the controller.

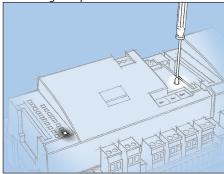
Press a weekday and set the time for the day period. Continue with the other days.

A complete weekly sequence is shown in the display.


Danfoss

Installation in network

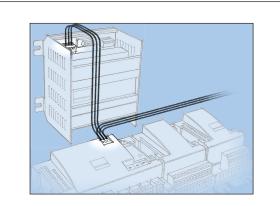
1. Set the address (here, for example 3)


Turn the right-hand address switch so that the arrow will point at 3.

The arrow of the two other address switches must point at 0.

2. Push the Service Pin

Press down the service pin and keep it down until the Service Pin LED lights up.

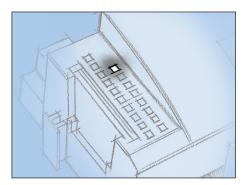

3. Wait for answer from the system unit

Depending on the size of the network it may be up to one minute before the controller receives an answer as to whether it has been installed in the network.

When it has been installed the Status LED will start to flash faster than normal (once every half second). It will continue with this for about 10 minutes

4. Carry out new login via Service Tool

If the Service Tool was connected to the controller while you installed it in the network, you must carry out a new login to the controller via the Service Tool.



The controller has to be remote-monitored via a network. In this network we assign address number 3 to the controller.

The same address must not be used by more than one controller in the same network.

Requirement to the system unit

The system unit must be a gateway type AKA 245 with software version 6.0 or higher. It is capable of handling up to 119 AK controllers.

If there is no answer from the system unit

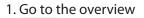
If the Status LED does not start flashing faster than normal, the controller has not been installed in the network. The reason for this may be one of the following:

The controller has been assigned an address out of range Address 0 cannot be used.

If the system unit in the network is an AKA 243B Gateway only the addresses between 1 and 10 can be used.

The selected address is already being used by another controller or unit in the network:

The address setting must be changed to another (vacant) address.


The wiring has not been carried out correctly. The termination has not been carried out correctly.

The data communication requirements are described in the document: "Data communcation connections to ADAP-KOOL® Refrigeration Controls" RC8AC.

Danfoss

First start of control

Check alarms

Press the blue overview button with the compressor and condenser at the bottom left of the display.

2. Go to the Alarm list

Press the blue button with the alarm bell at the bottom of the display.

3. Check active alarms

4. Remove cancelled alarm from the alarm list

Press the red cross to remove cancelled alarms from the alarm list.

5. Check active alarm again

In our case an active alarm remains because the control has stopped. This alarm must be active when control has not started. We are now ready for the startup of control.

In our case, we have a series of alarms. We will tidy them up so that we

only have those that are relevant.

Please note that active plant alarms are automatically cancelled when the main switch is in pos. OFF. If active alarms appear when the control is started the reason for these should be found and remedied.

70

Start the control

1. Go to Start/Stop display

Press the blue manual control button at the bottom of the display.

2. Start control

Press in the fileld against **Main switch**. Select **ON**. Press **OK**. The controller will now start controlling the compressors and the fans.

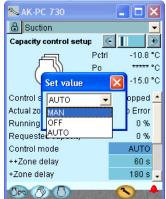
Note: Control does not start until both the internal and external switch are "ON".

Danfoss

Manual capacity control

1. Go to overview

2. Select suction group



Press the suction group button for the suction group that is to be controlled manually.

Press the +-button to go on to the next page

3. Set capacity control to manual

- 4. Set capacity in percent
 - Press in the blue field against Manual capacity.

📉 AK-PC 730 📃 🗖 🔀								
🔒 Suction 👤								
Capacity control setup								
		Pctrl	-10.8 °C					
	Set value		*** °C					
	100	<u> </u>	5.0 °C					
Contr	50	%	ped 📩					
Actual	0	_	rror					
Runni		<u> </u>	0%					
Requ	OK	Cancel) % <u> </u>					
Control mode MAN								
Manua	al capacity		0%					
++Zor	ie delay		60 s 🖵					
0m	00							

If you need to manually adjust the capacity of the compressors, you can use the following procedure:

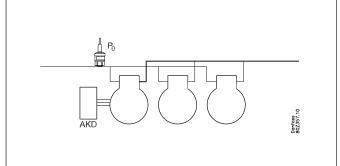
Press the blue field against **Control mode** Select **MAN**. Press **OK**.

Set the capacity to the required percentage. Press **OK**.

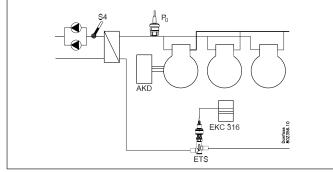
<u>Danfvšš</u>

5. Regulating functions

This section describes how the different functions work

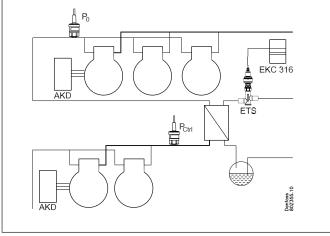

Suction group

Controlling sensor selection


Depending on use, the capacity distributor can regulate according to the suction pressure P0, a media temperature S4 or separate control pressure Pctrl in a different refrigeration circuit, e.g. cascade system.

Cap. Ctrl sensor = P0 / S4 /Pctrl

Example 1 – P0



Example 2 – S4 media sensor

When the controlling sensor is selected as S4, P0 is used as a safety function for low suction pressure and will ensure disconnection of compressor capacity (frost protection).

Example 3 – Pctrl sensor

When Pctrl is used as controlling sensor, a refrigerant type for this pressure transmitter must be set, e.g. CO2.

P0 is used as a safety function against insufficient suction pressure and will ensure disconnection of compressor capacity.

On cascade systems the signal from Pctrl can be used by both the high-pressure and low-pressure controls either for the controlling sensor or high-pressure monitoring.

Handling of sensor error

Cap. Ctrl. Sensor = P0

When P0 is used as the regulating sensor, an error in the signal will mean that regulation continues with 50% cutin in daily operation and 25% cut-in at night, but for a minimum of one step.

Cap. Ctrl. Sensor = S4

Provided that S4 is used as a regulating sensor, an error in this sensor will mean that regulation continues fromm the P0 signal, but in accordance with a reference that lies 5K under the real reference. If there is an error on both S4 and P0, regulation will continue with 50% cut-in in daily operations and 25% of cut-in in night operations, but for a minimum of one step.

Cap. Ctrl. Sensor = PcB

When Pctrl is used as a controlling sensor, an error in this sensor will mean that regulation continues after the P0 signal, but in accordance with a reference that lies 5 K under the real reference. If there is an error on both Pctrol and P0, regulation will continue with e.g. 50% cut-in in daily operations and e.g. 25% cut-in in night operations, but for a minimum of one step.

Reference

The reference for the regulation can be defined in 2 ways:

Either PORef = P0 setting + P0 optimisation or PORef = P0 setting + night setback + Ext. Ref

P0 setting

A basic value for the suction pressure is set.

Night setback

The function is used to change the suction pressure reference for night time operation as an energy saving function.

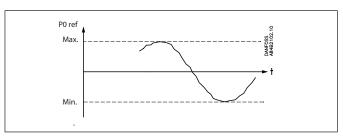
With this function the reference can be displaced by up to 25 K in positive or negative direction. (When you displace to a higher suction pressure, a positive value is set).

- Displacement can be activated in three ways:
- Signal on an input
- From a master gateway's override function
- Internal time schedule

The "night setback" function can not be used when regulation with the override function "P0-optimisation" is performed. (Here the override function will itself adapt the suction pressure to the max. permissible).

P0 optimisation

This function displaces the reference so that regulation will not take place with a lower suction pressure than required. The function cooperates with controllers on the individual refrigeration appliances and a gateway. The gateway obtains data from the individual regulations and adapts the suction pressure to the optimum energy level. The function is described in the document named "Override".


With this function you can read which appliance is most heavily loaded at the moment as well as the displacement allowed for the suction pressure reference.

Override with a 0 - 10 V signal

When a voltage signal is connected to the controller the reference can be displaced. In the setup it is defined how big a displacement is to take place at max. signal (10 V) and at min. signal.

Limitation of reference

To safeguard yourself against a too high or too low regulation reference, a limitation of the reference must be set.

Forced operation of the compressor capacity in the suction group

A forced operation of the capacity can be carried out which disregards the normal regulation. Depending on the selected form of forced operation, the safety functions will be cancelled.

Forced operation via overload of requested capacity

The control is set to manual and the desired capacity is set in % of the possible compressor capacity.

Forced operation via overload of digital outlets

The individual outputs can be set to MAN ON or MAN OFF in the software. The control function disregards this but an alarm is sent out that the outlet is being overridden.

Forced operation via change-over switches

If the forced operation is done with the switch-over on the front of an expansion model, this is not registered by the control function and no alarm is sounded. The controller continues to run and couples with the other relays.

Capacity control of compressors

PI-control and control zones

AK-PC 730 can control up to 4 compressor steps (incl. unloader valves). One or two of the compressors can be equipped with speed regulation.

The calculation of the requested compressor capacity takes place on the basis of a Pl control, but the set up is carried out in the same way as for a neutral zone which is divided into 5 different control zones as shown in below sketch.

The width of some of the zones can be set via the settings "+ Zone K", "NZ K" and "- Zone K".

Furthermore it is possible to adjust zone timers which is equal to the Tn integration time for the PI controller whenever the suction pressure is in the zone in question (please see sketch above).

By setting a zone timer to a higher value will make the PI controller slower in this zone and by setting the zone timer lower will make the PI controller faster in this zone.

The amplification factor Kp is adjusted as parameter "Kp Po" In the neutral zone the controller is only allowed to increase or decrease the capacity by means of speed control and/or switching of unloader valves.

In the other zones the controller is also allowed to increase/ decrease capacity by means of starting and stopping compressors.

Operation time first step

At start-up the refrigeration system must have time to be stable before the PI controller takes over the control. For this purpose at start-up of a plant a limitation is made of the capacity so that only the first capacity step will cutin after a set period (to be set via "runtime first step").

Requested capacity

The readout "Requested capacity" is the output from the PI controller and it shows the actual requested compressor capacity by the PI controller. The rate of change in the requested capacity depends upon in which zone the pressure is and whether the pressure is stable or whether it is constantly changing.

The Integrator is looking at the deviation between the set point and the current pressure only and increases/reduces the requested capacity correspondingly. The amplification factor Kp on the other hand only looks at the temporary pressure changes.

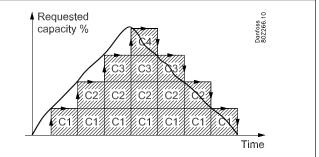
In the "+ Zone" and "++ Zone" the controller will normally increase the requested capacity as the suction pressure is above the set point. But if the suction pressure is decreasing very fast the requested capacity might decrease also in these zones.

In the "- Zone" and "-- Zone" the controller will normally decrease the requested capacity as the suction pressure is below the set point. But if the suction pressure is increasing very fast the requested capacity might increase also in these zones.

Change capacity

The controller will cutin or cutout capacity based on these basic rules:

Increase capacity:


The capacity distributor will start extra compressor capacity as soon as the requested capacity has increased to a value, which allows the next compressor step to start. Referring to below example - a compressor step is added as soon as there is "Room" for this compressor step below the requested capacity curve.

Decrease capacity:

The capacity distributor will stop compressor capacity as soon as the requested capacity has decreased to a value, which allows the next compressor to stop. Referring to below example - a compressor step is stopped as soon as there is no more "Room" for this compressor step above the requested capacity curve.

Example:

4 compressor of equal size - The capacity curve will look like this

Cut-out of the last compressor stage:

Normally, the last compressor step will only be cut-out when the required capacity is 0% and the suction pressure is at "-Zone" or in "—Zone"

Pump down function:

To avoid too many compressor starts/stops with low load, it is possible to define a pump down function for the last compressor.

If the pump down function is used, the last compressor will only be cut-out when the desired capacity is down to 0% and the actual suction pressure is down to the configured pump down limit.

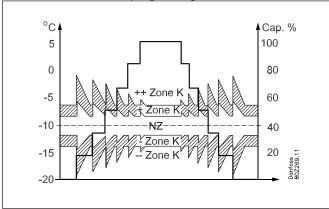
Note that the configured pump down limit should be set higher than the configured safety limit for low suction pressure "Min Po".

Danfoss

Dynamic extension of the neutral zone

All refrigeration systems have a dynamic response time when starting and stopping compressors. In order to avoid that the controller will start/stop compressors shortly after each other, the controller must be allowed some extra time after a compressor start/stop to see the effect of the previous change in running capacity.

In order to achieve this, a dynamic extension of the zones is added.


The zones will be extended for a short period of time when starting or stopping a compressor. By extending the zones the PI controller will be slowed down in a short period of time after a change in compressor capacity.

The amplitude of the zone extension depends upon the actual running compressor capacity and upon the size of the compressor step which is being stopped/started. The amplitude of the zone extension is bigger when running with low compressor capacity and when starting/stopping big compressor capacity steps. However the time period for the zone extension is constant – after a fixed time period after a compressor start/stop the dynamic zone extension is reduced to 0.

Via the "Minimize number of couplings" setting it is possible to influence how big the amplitude of the dynamic zone extension should be in order to minimize the cycling of the compressors. By setting "Minimize number of couplings" to "No reduction" there will be no dynamic extension of the zones.

By setting "Minimze number of couplings" to "Low", "Medium" or "High" the dynamic extension of the zones will be activated. The amplitude of the zone extension will be highest when "Minimize number of couplings" is set to "High". Please refer to the next sketch which shows an example with 6 compressor steps and with "Minimize number of couplings" set to "High". Please also note that the dynamic extension of the zones is highest at low compressor capacity.

"Minimize number of couplings" = "High"

Actual band

As a consequence of the dynamic extension of the zones the suction pressure might very well change zone for a period of time when the controller is starting/stopping a compressor i.e. the suction pressure is in the +Zone, but as the controller starts a compressor, the zones are extended for a period of time and during this period of time the suction pressure will be in the NZ.

In the controller the readout "Actual band" will show in which zone the PI controller is operating – this includes the extension of the zones.

Capacity distribution methods

The capacity distributor can work based on 3 distribution principles.

Coupling pattern – sequential operation:

The compressors are cut in and cut-out following the "First in, Last out" (FILO) principle in accordance with the sequence defined in the set-up.

Any speed-regulated compressors are used to close capacity gaps.

Timer restrictions

If a compressor is prevented from starting because it "hangs" on the re-start timer, this step is not replaced by another compressor but the step switch waits until the timer has lapsed.

Safety cutout

If on the other hand there is a safety switch on this compressor, this is excluded and the step switch immediately selects the following step in the sequence.

Coupling pattern – Cyclical operation:

This principle is used if all compressors are of the same type and size.

The compressor cuts-in and cuts-out in accordance with the "First In First Out" principle (FIFO) to equalise operating hours between the compressors.

Speed-regulated compressors will always be cut in first, and the variable capacity is used to fill capacity gaps between the subsequent steps.

Timer restrictions and safety cut outs

If a compressor is prevented from starting because it is "hanging" on the restart timer or is safety cut out, this step is replaced by another compressor.

Operating time equalisation

The operating hour equalizing is carried out between compressors of the same type with the same total capacity.

- -At the different startups the compressor with the lowest number of operating hours will be started first.
- At the different stops the compressor with the highest number of operating hours will be stopped first.
- For compressors with several steps, the operating time equalizing is carried out between the compressors' main steps.

Coupling pattern – Best fit operation

This principle is used if the compressors are of different sizes. The capacity distributor will cut-in or cut-out the compressor capacity in order to ensure the least possible capacity jump. Speed-regulated compressors will always be cut in first, and the variable capacity will be used to fill capacity gaps between the subsequent steps.

Timer restrictions and safety cut outs

If a compressor is prevented from starting because it is "hanging" on the restart timer or is safety-cut out, this step is replaced by another compressor or another combination.

Minimum capacity change

To prevent the capacity distributor from selecting a new compressor combination (cut-out and cut-in compressors) due to a small change in capacity requirements, it is possible to set a minimum change in capacity requirement that will operate before the capacity distributor changes to a new compressor combination.

Power pack types – compressor combinations

The controller is able to control power packs with up to 4 compressors of various types:

- One or two speed controlled compressor
- Capacity controlled piston compressors with up to 3 unloader valves
- Single step compressors piston or scroll

The chart below shows the compressor combination which the controller is capable of controlling. The chart also shows which coupling pattern can be set for the individual compressor combinations.

Combination	Description	Coupling pattern			
		Sequence	Cyclical	Best fit	
000	One-step compressors. *1	x	x	x	
	A compressor with an unload valve, combined with one-step compressors. *2	x	х		
	All compressors with unload valves. *2	х	x		
600	A speed-regulated compres- sor combined with one-step compressors. *1 and *3	х	x	x	
	A speed-regulated compressor combined with several com- pressors with unload valves. *2 and *3	x	x		
	Two speed-regulated compres- sors combined with one-step compressors *4	х	х	х	

*1) For a cyclical coupling pattern, the one-step compressors must be the same size.
*2) For compressors with unload valves, it is generally true that they must have the same size, the same number of unload valves (max 3) and the same sized main steps. If compressors with unload valves are combined with one-step compressors, all compressors should be the same size.

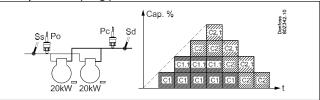
- *3) Speed-regulated compressors can have different sizes in relation to subsequent compressors.
- *4) When two speed-regulated compressors are used, they must have the same frequency range.

For cyclical coupling patterns, the two speed-regulated compressors should be the same size and the subsequent one-step compressors should also be the same size.

In appendix A there is a more detailed description of the coupling patterns for the individual compressor applications with associated examples.

The following is a description of some general rules for handling capacity-regulated compressors, speed-regulated compressors and also for two speed-regulated compressors.

Capacity-regulated compressors with unload valves


"Unloader control mode" determines how the capacity distributor should handle these compressors.

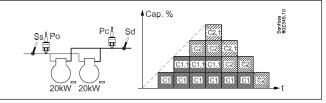
Unloader control mode = 1

Here the capacity distributor allows only one of the compressors to be unloaded at a time. The advantage of this setting is that it avoids operating with several compressors unloaded, which is not energy efficient.

For example:

Two capacity-regulated compressors of 20 kW, each with 2 unload valves, cyclical coupling pattern.

- For decreasing capacity, the compressor with the most operating hours is unloaded (C1).
- When C1 is completely unloaded, it is cut-out before compressor C2 is unloaded.


$Unloader \ control \ mode = 2$

Here the capacity distributor allows two compressors to be unloaded while capacity is decreasing.

The advantage of this setting is it reduces the number of compressor start/stops.

For example:

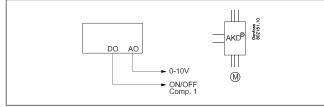
Two capacity-regulated compressors of 20 kW, each with 2 unload valves, cyclical coupling pattern.

- For decreasing capacity, the compressor with the most operating hours is unloaded (C1).
- When C1 is completely unloaded , compressor C2 with one-step is unloaded before C1 is cut out.

Dantoss

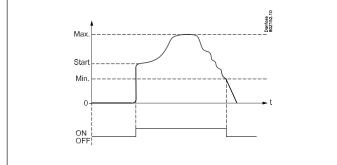
Speed control compressors:

The controller is able to use speed control on the leading compressor in different compressor combinations. The variable part of the speed controlled compressor is used to fill in capacity gaps of the following compressor steps.


General regarding handling:

One of the defined capacity steps for the compressor regulation may be connected to a speed control unit that may be a frequency converter type AKD, for example.

An output is connected to the frequency converter's ON/OFF input and at the same time an analog output "AO" is connected to the frequency converter's analog input.

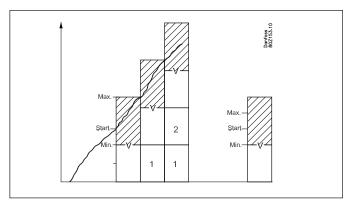

The ON/OFF signal will start and stop the frequency converter and the analog signal will indicate the speed.

It is only the compressor defined as compressor 1 that can be speed controlled.

When the step is in operation it will consist of a fixed capacity and a variable capacity. The fixed capacity will be the one that corresponding to the mentioned min. speed and the variable one will lie between the min. and max. speed. To obtain the best regulation the variable capacity must be bigger than the subsequent capacity steps it has to cover during the regulation. If there are major short-term variations in the plant's capacity requirement it will increase the demand for variable capacity.

This is how you cut the step in and out:

Cutin


The speed-controlled compressor will always be the first to start and the last to stop. The frequency converter will be started when a capacity requirement corresponding to the mentioned "Start speed" arises (the relay output changes to ON and the analog output is supplied with a voltage corresponding to this speed). It is now up to the frequency converter to bring the speed up to "Start speed".

The capacity step will now be cut in and the required capacity determined by the controller.

The start speed always ought to be set so high that a fast lubrication of the compressor is obtained during the start.

Controlling – increasing capacity

If the need for capacity becomes larger than "Max. Speed" then the subsequent compressor step will be cut-in. At the same time, the speed on the capacity step will be reduced so the capacity is reduced with a size that corresponds to exactly the cut-in compressor step. Thereby a completely "frictionless" transition is achieved without capacity holes (refer also to sketch).

Controlling – decreasing capacity

If the capacity requirement becomes less than "Min. speed" then the subsequent compressor step will be cut-out. At the same time, the speed on the capacity step is increased so the capacity is increased with a size that corresponds to exactly the cut-out compressor step.

Cut-out

The capacity step will be cut-out when the compressor has reached "Min. Speed" and the requested capacity has dropped to 1%.

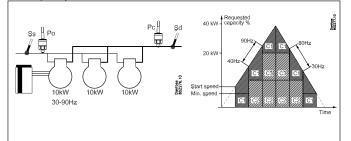
Timer restriction on speed controlled compressor If a speed controlled compressor is not allowed to start due to a timer restriction, no other compressor is allowed to start. When the timer restriction has expired the speed controlled compressor will start.

Safety cutout on speed controlled compressor If the speed controlled compressor is cutout on safety other compressors are allowed to start. As soon as the speed controlled compressor is ready to start it will be the first compressor to start.

Dantoss

As mentioned before the variable part of the speed capacity should be bigger than the capacity of the following compressor steps in order to achieve a capacity curve without "holes". In order to illustrate how the speed control will react at different pack combinations a couple of examples will be given here:

a) Variable capacity bigger than following compressor steps:


When the variable part of the speed controlled compressor is bigger than the following compressors there will be no "holes" in the capacity curve.

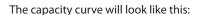
Example:

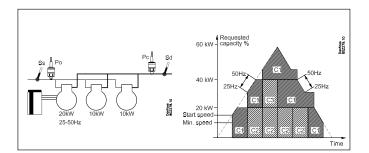
1 speed controlled compressor with a nominal capacity at 50Hz of 10kw - Variable speed range 30 – 90Hz 2 one step compressors of 10 kW

Fixed capacity = $30 \text{ HZ} / 50 \text{ HZ} \times 10 \text{ kW} = 6 \text{ kW}$ Variable capacity = $60 \text{ HZ} / 50 \text{ Hz} \times 10 \text{ kW} = 12 \text{ kW}$

The capacity curve will look like this:

As the variable part of the speed controlled compressor is bigger than the following compressor steps, the capacity curve will be without holes.


- 1) The speed controlled compressor will be cutin when the requested capacity has reached the start speed capacity.
- 2) The speed controlled compressor will increase speed until it reaches max speed at a capacity of 18 kw.
- 3) The one step compressor C2 of 10 kW is cut in and the speed on C1 is reduced too so that it corresponds to 8kW (40Hz)
- 4) The speed controlled compressor will increase speed until the total capacity reaches 28 kw at max speed
- 5) The one step compressor C3 of 10kW is cut in and the speed on C1 is reduced too so that it corresponds to 8kW (40Hz)
- 6) The speed controlled compressor will increase speed until the total capacity reaches 38 kw at max speed
- 7) When reducing capacity the one step compressors will be cut out when the speed on C1 is at minimum


b) Variable part smaller than following compressor steps:

If the variable part of the speed controlled compressor is smaller than the following compressors there will be "holes" in the capacity curve.

Example:

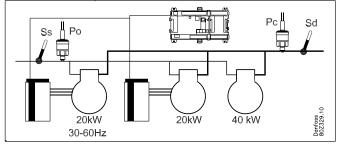
1 speed controlled compressor with a nominal capacity at 50Hz of 20kw - Variable speed range 25 - 50Hz2 one step compressors of 20 kW Fixed capacity = $25 HZ / 50 HZ \times 20 kW = 10 kW$ Variable capacity = $25 HZ / 50Hz \times 20 kW = 10 kW$

As the variable part of the speed controlled compressor is smaller than the following compressor steps the capacity curve will have some holes that can not be filled out by the variable capacity.

- 1) The speed controlled compressor will be cutin when the requested capacity has reached the start speed capacity.
- 2) The speed controlled compressor will increase speed until it reaches max speed at a capacity of 20 kw.
- 3) The speed controlled compressor will stay at max speed until the requested capacity has increased to 30 kW.
- 4) The one step compressor C2 of 20 kW is cut in and the speed on C1 is reduced to min. so that it corresponds to 10kW (25Hz). Total capacity = 30 kW.
- 5) The speed controlled compressor will increase speed until the total capacity reaches 40 kW at max speed
- 6) The speed controlled compressor will stay at max speed until the requested capacity has increased to 50 kW.
- 7) The one step compressor C3 of 20kW is cut in and the speed on C1 is reduced to min. so that it corresponds to 10kW (25Hz). Total capacity = 50 kW
- 8) The speed controlled compressor will increase speed until the total capacity reaches 60 kw at max speed
- 9) When reducing capacity the one step compressors will be cut out when the speed on C1 is at minimum speed.

Two speed-regulated compressors

The controller is capable of regulating the speed of two compressors of the same or different sizes. The compressors can be combined with one-step compressors of the same or different sizes, depending on the choice of coupling pattern.


General regarding handling:

Generally, the two speed-regulated compressors are managed according to the same principle as for one speed-regulated compressor. The advantage of using two speed-regulated compressors is that it allows for a very low capacity, which is an advantage for low loads. At the same time, it produces a very large, variable regulating area.

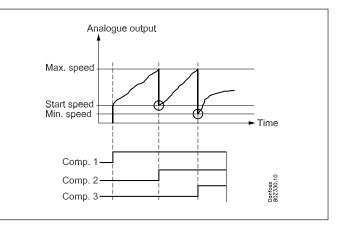
Compressor 1 and 2 both have their own relay outlets to start/ stop separate frequency converters, for example of type AKD. Both frequency converters use the same analog output signal AO which is connected to the frequency converters' analog signal input. The relay outputs will start and stop the frequency converter and the analog signal will indicate the speed.

The precondition for using this regulating method is that both compressors have the same frequency range.

The speed-regulated compressors will always be the first to start and the last to stop.

Cutin

The first speed-regulated compressor will be started when there is a capacity requirement which matches the setting.


The "Start speed" (relay outlet changes to on and the analog outlet is supplied with a voltage that matches this speed). It is now up to the frequency converter to bring the speed up to the "Start speed".

The capacity step will now be cut in and the desired capacity determined by the controller.

The start speed should always be set so high that a good lubrication of the compressor is quickly reached during start-up. For a cyclical coupling pattern, the subsequent speed-regulated compressor will be cut in when the first compressor runs at max. speed and the desired capacity has reached a value that allows the cut-in of the next speed-regulated compressor at start speed. Afterwards, both compressors will be cut in together and will run

in parallel. The following one-step compressors will be cut in and

out in accordance with the selected coupling pattern.

Controlling – decreasing capacity

The speed-regulated compressors will always be the last compressors running.

When the capacity requirement during cyclical operations becomes less than "Min. speed" for both compressors, the speedregulated compressor with the most operating hours will be cut-out. At the same time, the speed of the last speed-regulated compressor increases so that the capacity is increased to the level that matches the cut-out compressor's step.

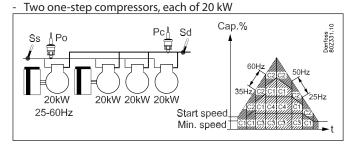
Cutout

The last speed-regulated compressor will be cut-out when the compressor has reached "Min. speed" and the capacity requirement (desired capacity) has decreased to under 1% (see however the section on the pump down function).

Timer restriction and safety cut-outs

Timer limits and safety cut-outs on speed-regulated compressors should be managed in accordance with the general rules for individual coupling patterns.

Short descriptions and examples are given below of the handling of two speed-regulated compressors for the individual coupling patterns. For a more detailed description, refer to the appendix at the end of the chapter.

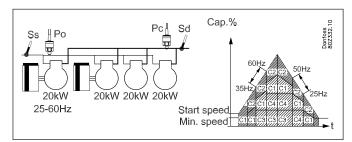

Sequential operation

During sequential operations, the first speed-regulated compressor will always start first. The following speed-regulated compressor will be cut in when the first compressor runs at max. speed and the desired capacity has reached a level that allows the cut-in of the next speed-regulated compressor at start speed. Afterwards, both compressors will be cut in together and they will run in parallel. The following one-step compressors will be cut in and out in accordance with The First-In-Last-Out principle.

Danfoss

Example:

- Two speed-regulated compressors with a nominal capacity of 20 kW and frequency range 25-60 Hz



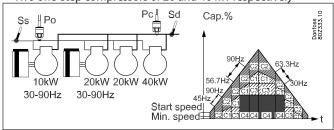
Cyclical operation

For cyclical operations, both speed-regulated compressors will have the same size and operating hours will be equalised between the compressors in accordance with the First-in-First-Out Principle (FIFO). The compressor with the least operating hours will be the first to start. The following speed-regulated compressor will be cut in when the first compressor runs at max. speed and the desired capacity has reached a value that allows the cut-in of the next speed-regulated compressor at start speed. Afterwards, both compressors will be cut in together and they will run in parallel. The following one-step compressors will be cut in and out in accordance with First-In-First-Out principle in order to equalise operating hours.

Example:

- Two speed-regulated compressors with a nominal capacity of 20 kW and frequency range 25-60 Hz
- Two one-step compressors, each of 20kW

Best fit


During best-fit operations, the speed-regulated compressors can have different sizes and they will be handled in such a way that the best possible capacity adjustment is achieved. The smallest compressor will be started first, then the first will be cut-out and the second compressor will cut in. Finally, both compressors will be cut in together and will run in parallel.

The following one-step compressors will, in every case, be handled in accordance with the best-fit coupling pattern.

Example:

- Two speed-regulated compressors with a nominal capacity of 10 kW and 20 kW respectively
- Frequency range of 25-60 Hz

- Two one-step compressors of 20 and 40 kW respectively

Compressor timers

Time delays for cutins and cutouts

To protect the compressor against frequent restarts three time delays can be put in.

- A minimum time to run from a compressor's startup and until it may be restarted.
- A minimum time (ON-time) for the compressor to operate before it may be stopped again.
- A minimum OFF time to run from a compressor stops and until it may be restarted

When unloaders are cut in and out, the time delays will not be used.

Timer

The operating time of a compressor motor is registered continuously. You can read out:

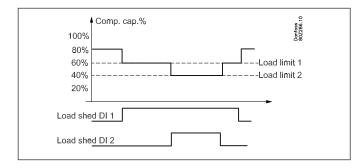
- operating time for the previous 24-hour period
- total operating time since the timer was last set to zero-set.

Coupling counter

The number of relay cutins and cutouts is registered continuously. The number of starts can be read out here:

- Number during the previous 24-hour period
- Total number since the counter was last set to zero-set.

Danfoss


Load shedding

On some installations there is the desire to limit the cut-in compressor capacity so that one can limit the total electrical load in the store for periods.

There are 1 or 2 digital inlets available for this purpose.

For each digital inlet a limit value is attached for the maximum allowable cut-in compressor capacity so that one can carry out the capacity limitation in 2 steps.

When a digital inlet is activated, the maximum allowable compressor capacity is limited to the set limit. This means that if the actual compressor capacity upon activation of the digital inlet is higher than this limit, then so much compressor capacity is cut-out that it will then be on or under the set maximum limit value for this digital inlet.

When both load-shedding signals are active, the lowest limit value for the capacity will be the one that is applicable.

Overriding of load shedding:

To avoid load shedding leading to temperature problems for the chilled products, an overriding function is fitted.

A overriding limit is set for the suction pressure as well as a delay time for each digital inlet.

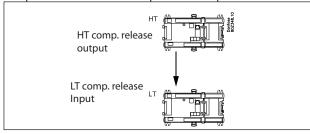
If the suction pressure during load shedding exceeds the set overriding limit and the attached delay times for the two digital inlets expire then load shedding overrides the signals so that the compressor capacity can be increased until the suction pressure is again under the normal reference value. The load shedding can then be activated again.

Alarm:

When a load shedding digital inlet is activated, an alarm will be activated to inform that the normal control has been bypassed. This alarm can however be suppressed if so desired.

Dantoss

Cascade systems – coordination and injection

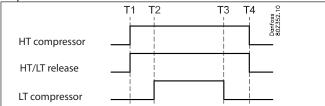

On cascade systems coordination is necessary between the two compressor groups for low temperature and high temperature respectively – low-pressure compressors must not start before the high-pressure compressors are running.

In addition it is necessary to give a signal to the injection control of the cascade refrigerator so that injection is started and stopped in synchronisation with start/stop of the compressors

Coordination

The coordination between high-pressure and low-pressure compressors can be carried out in two ways:

1) High-pressure/low-pressure compressor release Here the high-pressure group is the controlling circuit. The high-pressure compressors must not start before the load on the high-pressure circuit requires it and the low-pressure group must not be allowed to start before at least one high-pressure compressor has been started. This function is achieved by connecting the output signal from the high-pressure controller "High-pressure compressor release" to the input signal from the low-pressure controller "Low-pressure compressor release".

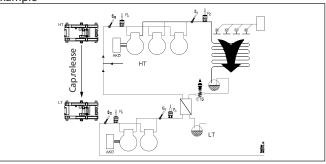


When a compressor is running in the high-pressure circuit, the controller will also pull the relay with the release signal into the low-pressure circuit.

The low-pressure controller must receive the signal as an On/Off signal. Either as a contact signal on analogue input or as voltage signal on a DI input.

Thread the connections between the two controllers so that the controllers are kept galvanically separate.

Sequence


T1: First high-pressure compressor starts and the release signal is activated

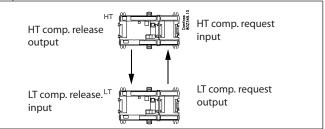
T2: When the need arises, the first low-pressure compressor starts T3: Last low-pressure compressor stops

T4: Last high-pressure compressor stops

(If the last high-pressure compressor stops "before T3", the release signal will drop out and thereby stop the low-pressure compressors.)

Example

High-pressure controller:


- High-pressure/low-pressure coordination = high-pressure compressor release
- High-pressure controller uses an output "High-pressure compressor release", which is activated when the first high-pressure compressor starts. *Low-pressure controller:*
- Low-pressure/high-pressure coordination = low-pressure compressor release
- The low-pressure controller uses an input "Low-pressure compressor release", which is connected to the output signal from the high-pressure controller. When the input receives the signal from the high-pressure controller, the first low-pressure compressor is released for start.

2) Low-pressure/high-pressure coordination

Here the high-pressure compressors can start either as a result of: - Load on the high-pressure circuit

- Requirements from the low-pressure circuit

The high-pressure circuit will still ensure that the low-pressure circuit is only permitted to start when at least one high-pressure compressor has started. It will also ensure that security timers and compressor timers are complied with.

Here both a relay output and an On/off input are used on both controllers.

(Thread the connections between the two controllers so that the controllers are kept galvanically separate.)

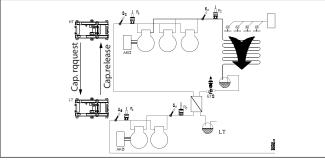
- The output signal from the high-pressure controller "High-pressure compressor release" gives a signal for the input signal of the low-pressure controller "Low-pressure compressor release".
- The low-pressure controller's output signal "Low-pressure compressor requirement" gives a signal to the high-pressure controller's input signal "High-pressure compressor requirement".

When the low-pressure controller requires a compressor to start, it will activate the "Low-pressure compressor requirement signal". When the high-pressure controller receives the signal, it will start the compressor and simultaneously send a release signal to the low-pressure controller via the relay output "High-pressure compressor relay".

Sequence

T1: The load on the low-pressure circuit requires that compressor

capacity be connected.


The low-pressure circuit requests compressor start for the highpressure circuit.

T2: First high-pressure compressor starts after expiry of recycle hours

T3: Last low-pressure compressor stops

T4: Last high-pressure compressor stops

Example

High-pressure controller:

- Low-pressure/high-pressure coordination = high-pressure coordination

- The high-pressure controller uses:

- An output "High-pressure compressor release", which is activated when the first high-pressure compressor starts.
- An input "High-pressure compressor requirement", which receives a signal from the low-pressure controller.

Low-pressure controller:

- Low-pressure/high-pressure coordination = low-pressure coordination

- The low-pressure controller uses:
- An input "Low-pressure compressor release" which is connected to the output "High-pressure compressor release" on the highpressure controller.
- An input "Low-pressure compressor requirement" which is connected to the input "High-pressure compressor requirement" on the high-pressure controller.

Time delays on signals

To achieve optimum coordination between the high-pressure and low-pressure circuits it is possible to define time delays on all input and output signals.

High-pressure release delay

Here the output signal from the high-pressure controller is delayed.

This means that the high-pressure compressors will be permitted to run for the set delay before the low-pressure compressors are released for start.

High-pressure compressor requirement delay

Here the input signal "HT compressor requirement" is delayed on the high-pressure controller and thereby the start-up of the first high-pressure compressor.

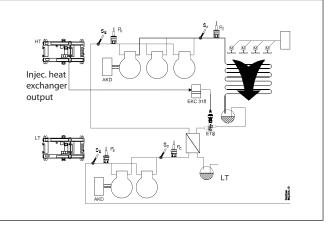
This delay can be used if the low-pressure circuit requires start-up of high-pressure compressors too often.

Low-pressure compressor release delay

Here the input signal "Low-pressure compressor release" is delayed on the low-pressure controller.

This means that the high-pressure compressors will be permitted to run for the set delay before the low-pressure compressors are released for start.

Low-pressure compressor requirement delay

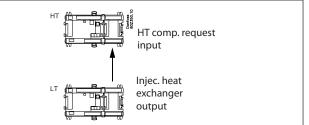

Here the output signal "Low-pressure compressor requirement" is delayed from the low-pressure controller. This delay can be used if the low-pressure circuit requires start-up of high-pressure compressors too often.

Injection signal to heat exchanger control

An injection into the cascade heat exchanger must usually be coordinated with the start-up of the first compressor. The injection must start at the same time as the first compressor and stop at the same time as the last compressor.

Depending on system type/design, it will be advantageous to synchronise the injection with the low-pressure or high-pressure compressors.

A relay output can be used for the synchronisation of this signal. The relay output can e.g. be used to control a magnet valve or to signal to a controller. E.g. an EKC 316.

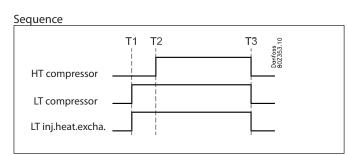


Special cases for coordination

On certain cascade systems the low-pressure compressors must be allowed to start before the start-up of the high-pressure compressors.

Please note that it cannot be ensured that the high-pressure compressors are ready for start-up when the high-pressure controller receives the compressor requirement signal. Ensure that the lowpressure compressors are disconnected at the Pc max safety limit if the high-pressure compressors are prevented from starting.

Here an injection signal from the low-pressure controller can be used to request start of high-pressure compressors.



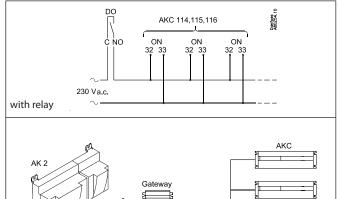
- The low-pressure controller's injection signal is connected to the high-pressure controller's input signal "High-pressure compressor requirement".

When the low-pressure controller starts the first compressor, the injection signal will be activated and thereby request high-pressure compressor start. When any delay in the high-pressure control has expired, the first high-pressure compressor will start.

Danfoss

Janfoas 180291.

T1: The load on the low-pressure circuit requires compressor capacity.


Low pressure starts compressor and activates injection signal and thereby the input "High-pressure request" on the highpressure controller.

- T2: First high-pressure compressor starts after expiry of delays.
- T3: Last low-pressure compressor stops which removes the compressor requirement signal and the last high-pressure compressor stops.

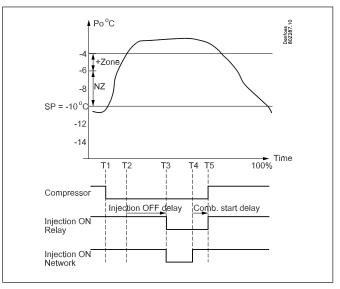
Injection ON

The electronic expansion valves in the refrigeration appliances must be closed when all the compressors are stopped and a restart is blocked. In this way the evaporators will not be filled with liquid which is subsequently passed on to a compressor when regulation is restarted.

One of the compressor control relays may be used for this function, or the function can be obtained via data communication.

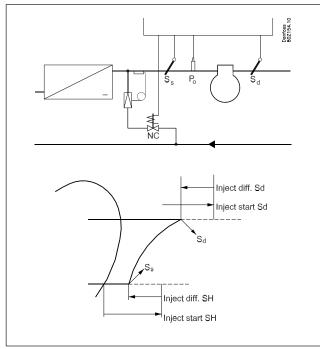
with data communication

The function is described based on the sequence of events below:


DANBUSS

T1) The last compressor is cut-out

I ON


- T2) The suction pressure has increased to a value corresponding to Po Ref + NZ + "+Zone K" but no compressor can start due to re-start timers or safety cut-out
- T3) The time delay "Injection OFF delay" elapses and the injection valves are forced to close via relay signal or via network signal.
- T4) The first compressor is now ready to start. The forced closure signal via the network is now cancelled.
- T5) The time delay "Comp. Start delay" expires and the forced closure signal via the relay switch is cancelled simultaneously with the first compressor being allowed to start.

The reason why the forced closure signal via the network is cancelled before the first compressor starts, is that it will take some time to distribute the signal to all appliance controllers via the network.

Dantoss

Liquid injection in suction line

The high-pressure gas temperature can be kept down by means of liquid injection into the suction line.

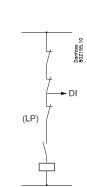
The injection is accomplished with a thermostatic expansion valve in series with a solenoid valve. The solenoid valve is connected to the controller.

Control can be carried out in two ways:

- 1. The liquid injection is exclusively controlled on the basis of the superheat in the suction line. Two values are set a starting value and a differential where the injection is stopped again.
- 2. The liquid injection is both controlled by the superheat (as described above) and by discharge temperature Sd. Four values are set two as mentioned above and two for the Sd function, a starting value and a differential. The liquid injection is started when both starting values have been passed, and is stopped again when just one of the two functions cuts out.

Time delay

A time delay can be set which ensures that the injection is delayed during start up.

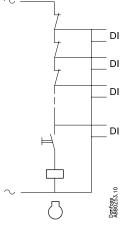

Safety functions

Signal from the compressor's safety controls

The controller can monitor the status of each compressor's safety circuit. The signal is taken directly from the safety circuit and connected to an input.

(The safety circuit must stop the compressor without involving the controller).

If the safety circuit is cut out the controller will cut out all output relays for the compressor in question and give an alarm. Regulation will continue with the other compressors.


If a low-pressure switch is placed in the safety circuit it must be placed at the end of the circuit. It must not cut out the DI signals. (There is a risk that the regulation will become locked and that it will not start again). This also applies to the example below.

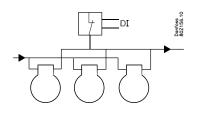
If an alarm is needed which also monitors the low-pressure thermostat, a "general alarm" can be defined (an alarm that does not affect the control). See the following section "General monitoring functions".

Extended safety circuit

Instead of a general monitoring of the safety circuit this monitoring function can be extended. In this way a detailed alarm message is issued which tells you which part of the safety circuit has dropped out.

The sequence of the safety circuit must be established as shown, but not all of them need necessarily be used.

Oil pressure cutout Motor control cutout


Motor overload protector cutout

Discharge temp. cutout

High pressure cutout

Common safety circuit

A common safety signal can also be received from the whole suction group. All compressors will be cut out when the safety signal cuts out.

Time delays with safety cut-out: In connection with safety monitoring of a compressor it is possible to define two delay times:

Cut-out delay time: Delay time from alarm signal from the safety circuit until the compressor outlet cuts out (note that the delay time is common to all security inlets for the compressor concerned)

Safety re-start time: The minimum time a compressor must be OK after a safety cut-out until it may start again.

Monitoring of superheat

This function is an alarm function which continuously receives measured data from suction pressure P0 and suction gas Ss. If superheat is registered which is lower or higher than the set limit values, an alarm will be given when the time delay has passed.

Monitoring of max. discharge gas temperature (Sd)

The function gradually cuts out compressor steps if the discharge temperature becomes higher than permitted. The cutout limit can be defined in the range from 0 to +150°C.

The function is started at a value that is 10 K below the set value. At this point the entire condenser capacity is cut in at the same time as 33% of the compressor capacity is cut out (but minimum one step). This is repeated every 30 seconds. The alarm function is activated.

If the temperature rises to the set limit value all compressor steps are immediately cut out.

The alarm is cancelled and renewed cutin of compressor steps is permitted when the following conditions are met:

the temperature has dropped to 10 K below the limit value
 the time delay prior to restart has been passed. (see later)
 Normal condenser control is permitted again when the
 temperature has dropped to 10 K below the limit value.

Monitoring of min. suction pressure (P0)

The function promptly cuts out all compressor steps if the suction pressure becomes lower than the permitted value. The cutout limit can be defined in the range from -120 to +30°C. The suction is measured with pressure transmitter P0.

At cutout the the alarm function is activated:

- The alarm is cancelled and renewed cutin of compressor steps is permitted when the following conditions are met:
- the pressure (temperature) is above the cutout limit
- the time delay has elapsed (see later).

Monitoring of max. condensing pressure (Pc)

The function cuts in all condenser steps and cuts out compressor steps one by one if the condensing pressure becomes higher than permitted. The cutout limit can be defined in the range from -30 to $+100^{\circ}$ C.

The condensing pressure is measured with pressure transmitter Pc.

The function takes effect at a value which is 3 K below the set value. At this time the entire condenser capacity is cut in at the same time as 33% of the compressor capacity is cut out (but min. one step). This is repeated every 30 seconds. The alarm function is activated.

If the temperature (pressure) rises to the set limit value, the following will happen:

- all compressor steps will immediately be cut out
- the condenser capacity will remain cut in

The alarm will be cancelled and renewed cutin of compressor steps is permitted when the following conditions are met:

- the temperature (pressure) falls to 3 K below the limit value
- the time delay for restart has been passed.

Delay of Pc max alarms

It is possible to delay the "Pc max alarm" message.

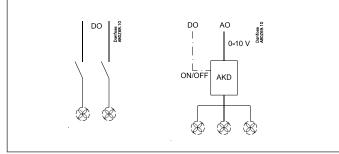
The controller will still disconnect the compressors, but the sending of the alarm itself is delayed.

The delay is useful on cascade systems where the max. Pc limit is used to disconnect compressors in the low-pressure circuit if the high-pressure compressors have not started.

Time delay

There is a joint time delay for "Monitoring of max. discharge gas temperature" and "Min. suction pressure".

After a cutout, regulation cannot be recommenced until the time delay has been passed.


The time delay starts when the Sd temperature has again dropped to 10 K below the limit value or P0 has risen above the P0 min. value.

Alarm for too high suction pressure

An alarm limit can be set which will become effective when the suction pressure becomes too high. An alarm will be transmitted when the set time delay has been passed. The regulation continues unchanged.

Condenser

Capacity control of the condenser can be accomplished via step regulation or speed control of the fans.

Step regulation

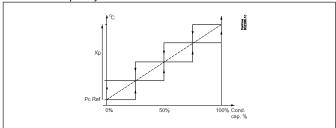
The controller can control up to 6 condenser steps that are cut in and out sequentially.

Speed control

The analog output voltage is connected to a speed control. All fans will now be controlled from 0 to max. capacity. If an ON/OFF signal is required it can be obtained from a relay output. Regulation can be carried out based on one of the following two principles:

- all fans operate at the same speed
- Only the necessary number of fans is cut in.

Capacity control of condenser

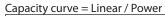

The cut-in condenser capacity is controlled by the condenser pressure's actual value and depends on whether the pressure is rising or falling. Regulation is performed by a PI controller which may however be changed into a P controller if the design of the plant necessitates this.

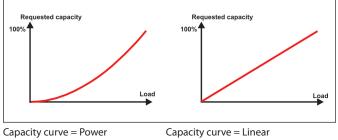
PI regulation

The controller cuts in capacity in such a way that the deviation between the actual condensing pressure and the reference value becomes as small as possible.

P regulation

The controller cuts in capacity that depends on the deviation between the actual condensing pressure and the reference value. The proportional band Xp indicates the deviation at 100% condenser capacity.




Capacity curve

On air-cooled condensers, the first capacity step will always give comparatively more capacity than the subsequent capacity steps. The increase in capacity produced by each extra step decreases gradually as more and more steps are cut in.

This means that the capacity controller requires more amplification at high capacities than at low capacities. Consequently, the capacity controller for condenser regulation functions with an arc-shaped capacity curve so that amplification is optimal at both high and low capacities. On some units, compensation is already made for the "problem" described above, by binary connection of the condenser fans: i.e. a few fans are connected at low capacity and many fans at high capacity, for example 1-2-4-8 etc. In this case, the non-linear amplification is already compensated for, and there is no need for an arc-shaped capacity curve.

It is therefore possible to choose on the controller whether you require an arc-shaped or a linear capacity curve to manage the condenser capacity.

Regulating sensor selection

The capacity distributor can either regulate from the condenser pressure PC or from the average temperature S7.

Cap. Ctrl sensor = Pc/S7

If the regulation sensor is selected for media temperature S7, then Pc is still used as the safety function for high condenser pressure and will therefore ensure cut-out of the compressor capacity when condenser pressure is too high.

Handling sensor errors:

Cap. Ctrl. Sensor = Pc

If Pc is used as the regulation sensor, an error in the signal will result in a cut-in of 100% condenser capacity, but the compressor regulation will remain normal.

Cap Ctrl. Sensor = S7

If S7 is used as the regulation sensor, an error in this sensor will result in further regulation that follows the Pc signal, but in accordance with a reference that is 5K over the actual reference. If there is an error on both S7 and Pc, 100% condenser capacity cuts-in, but the compressor regulation remains normal.

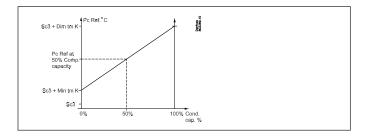
Reference for condensing pressure

The reference for the regulation can be defined in two ways. Either as a fixed reference or as a reference that varies according to the outdoor temperature.

Fixed reference

The reference for the condensing pressure is set in °C.

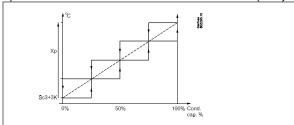
Floating reference


This function allows the condensing pressure's reference value to vary according to the outdoor temperature within a defined area. By combining floating condensing pressure with electronic expansion valves a lot of energy saving can be achieved. The

electronic expansion valves enables the controller to decrease the condensing pressure according to outdoor temperature and thereby reduce energy consumption by around 2% for each degree the temperature can be decreased.

PI regulation

- The reference is based on:
- the outdoor temperature measured with Sc3 sensor
- The minimum temperature difference between the air
- temperature and the condensing temperature at 0% compressor capacity.
- the condenser's dimensioned temperature difference between the air temperature and the condensing temperature at 100% compressor capacity (Dim tmK)
- how large a part of the compressor capacity has been cut in.

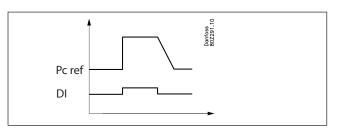


The minimum temperature difference (min tm) at low load should be set at approximately 6 K as this will eliminate the risk that all fans will be running when no compressors are running. Set the dimensioned difference (dim tm) at max. load (e.g. 15 K).

The controller will now contribute with a value to the reference which depends on how large a part of the compressor capacity has been cut in.

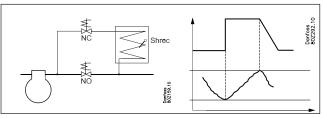
P-regultion

With P regulation the reference will be three degrees above the measured outdoor temperature. The proportional band Xp indicates the deviation with 100% condenser capacity.



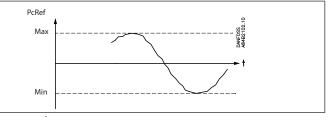
Heat recovery function

The heat recovery function can be used on the installation when you want to make use of warm gas for heating purposes. When the function is activated the reference for the condenser temperature will be raised to a set value and the attached relay outlet is used to activate a solenoid valve. The function can be activated in two ways:


1. A digital input signal is received

In this instance, the heat recovery function is activated via an external signal from, for example a building management system. When the function is activated the reference for the condenser temperature will be raised to a set value and the attached relay outlet is used to activate a solenoid valve.

2. Use of a thermostat for the function.


This function can be used with advantage where the heat recovery is used to warm up a water tank. A temperature sensor is used to activate/deactivate the heat recovery function. When the temperature sensor becomes lower than the set cut in limit, the heat recovery function is activated and the reference for the condenser temperature will be raised to a set value and simultaneously the chosen relay outlet is used to activate a solenoid valve which leads the warm gas through the heat exchanger in the water tank. When the temperature in the tank has reached the set value, the heat recovery is cut-out again.

In both cases it applies that when the heat recovery function is de-activated, the reference for the condensing temperature will then decline slowly in accordance with the set rate in Kelvin/ minute.

Limitation of the reference

To safeguard yourself against a too high or too low regulation reference, a limitation of the reference must be set.

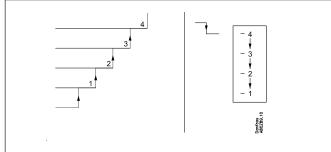
Forced operation of condenser capacity

Forced operation of the capacity can be arranged where the normal regulation is ignored.

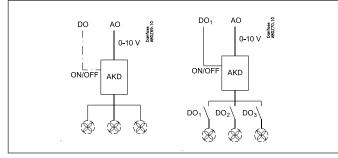
The safety functions are cancelled during forced operation.

Forced operation via setting The regulation is set to Manual. The capacity is set in percent of the regulated capacity.

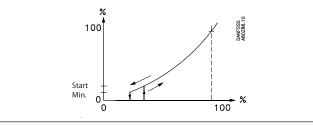
Forced operation of relays


If the forced operation is carried out with the switches at the front of an extension module, the safety function will register any exceeding of values and transmit alarms, if required, but the controller cannot cut the relays in or out in this situation.

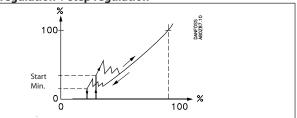
Capacity distribution


Step regulation

Cutins and cutouts are carried out sequentially. The last cut-in unit will be cut out first.

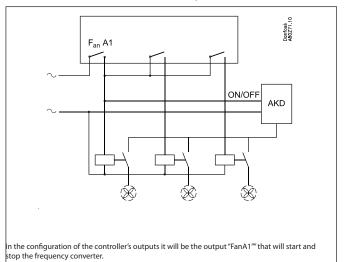

Speed regulation

When an analog output is used the fans can be speed regulated, e.g. with a frequency converter type AKD.

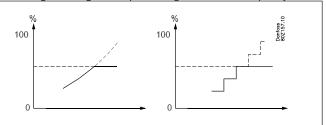

Joint speed regulation

The analog output voltage is connected to the speed regulation. All fans will now be regulated from 0 to max. capacity. If an ON/ OFF signal is required for the frequency converter, so that the fans can be stopped completely, a relay output can be defined.

The controller starts the frequency converter when the capacity requirement corresponds to the set starting speed. The controller stops the frequency converter when the capacity requirement becomes lower than the set minimum speed.


Speed regulation + step regulation

The controller starts the frequency converter and the first fan when the capacity requirement corresponds to the set starting speed.


The controller cuts in several fans step by step as the capacity requirement grows and then adapts the speed to the new situation.

The controller cuts out fans when the capacity requirement becomes lower than the set minimum speed.

Capacity limitation during night operation

The function is used to reduce the noise from the fans to a minimum. It is primarily used in conjunction with a speed control, but it will also be active when steps are cut in and out. The setting is arranged as a percentage of the max. capacity.

The limitation will be disregarded when safety functions Sd max. and Pc max. take effect.

Danfoss

Condenser couplings

Coupling of condenser steps

There are no time delays in connection with cutin and cutout of condenser steps beyond the time delay inherent in the PI/P-regulation.

Timer

The operating time of a fan motor is registered continuously. You can read out:

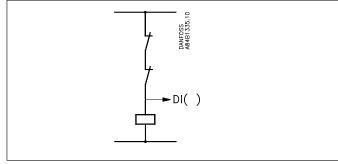
- operating time for the previous 24-hour period
- total operating time since the timer was last set to zero-set.

Coupling counter

The number of couplings is registered continuously. Here the number of starts can be read out:

- number during the previous 24-hour period
- total number since the counter was last set to zero-set.

Safety functions for condenser


Signal from fan and frequency converter's safety controls

The controller can receive signals on the status of each individual condenser step's safety circuit.

The signal is obtained directly from the safety circuit and connected to a "DI" input.

If the safety circuit is cut out the controller will give alarm. Regulation continues with the remaining steps.

The ancillary relay outlet is not cut-out. The reason for this is that the fan are often connected in pairs but with one safety circuit. With fault on the one fan, the other will continue to operate.

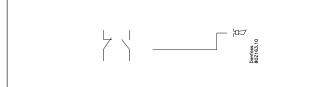
Intelligent fault detection (FDD) on the condenser's air flow

The controller collects measurements from the condenser control and will advise if/when the condenser's capacity is reduced. The most frequent reasons for the information will be:

- gradual accumulation of dirt on the fins

- foreign body in the suction
- fan stop

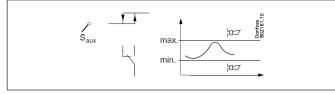
The function requires a signal from an outdoor temperature sensor (Sc3).


In order to detect accumulation of dirt it is necessary for the monitoring function to be connected to the relevant condenser. This is accomplished by tuning the function when the condenser is clean. The tuning must not be started until the plant has been run in and runs under normal operation conditions.

General monitoring functions

General alarm inputs (10 units)

An input can be used for monitoring an external signal.

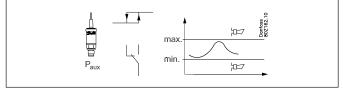


The individual signal can be adapted to the relevant use as it is possible to give the alarm function a name and to indicate your own alarm text.

A time delay can be set for the alarm.

General thermostat functions (5 units)

The function may freely be used for alarm monitoring of the plant temperatures or for ON/OFF thermostat control. An example could be thermostat control of the fan in the compressor compartment.


The thermostat can either use one of the sensors used by the regulation (Ss, Sd, Sc3) or an independent sensor (Saux1, Saux2, Saux3, Saux4).

Cutin and cutout limits are set for the thermostat. Coupling of the thermostat's output will be based on the actual sensor temperature. Alarm limits can be set for low and high temperature, respectively, including separate alarm delays.

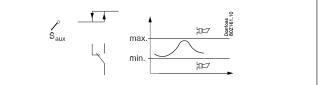
The individual thermostat function can be adapted to the relevant application as it is possible to give the thermostat a name and to indicate alarm texts.

General pressure control functions (5 units)

The function may freely be used for alarm monitoring of plant pressure or for ON/OFF pressure control regulation.

The pressure control can either use one of the sensors used by the control function (Po, Pc) or an independent sensor (Paux1, Paux2, Paux3).

Cutin and cutout limits are set for the pressure control. Coupling of the pressure control's output will be based on the actual pressure. Alarm limits can be set for low and high pressure, respectively, including separate alarm delays.


The individual pressure control function can be adapted to the relevant application as it is possible to give the pressure control a name and indicate alarm texts.

General voltage input with ancillary relay (5 units)

5 general voltage inputs are accessible for monitoring of various voltage measurements of the installation. Examples are monitoring of a leak detector, moisture measurement measurement and level signal - all with ancillary alarm functions. The voltage inputs can be used to monitor standard voltage signals (0-5V, 1-5V, 2-10V or 0-10V). If required, one can also use 0-20mA or 4-20mA if external resistance is placed at the inlet to adjust the signal to the voltage. A relay outlet can be attached to the monitoring so that one can control external units.

For each inlet, the following can be set/read out:

- Freely definable name
- Selection of signal type (0-5V, 1-5V, 2-10V, or 0-10V)
- Scaling of read-out so it corresponds to measuring unit
- High and low alarm limit including delay times
- Freely definable alarm text
- Attach a relay output with cut in and cut-out limits including delay times

Miscellaneous

Main switch

The main switch is used to stop and start the controlling function.

The switch-over has 2 positions:

- Normal controlling state (Setting = ON)
- Control stopped. (Setting = OFF)

In addition, one can also choose to use a digital input as an external main switch.

If the switch-over or the external main switch is set at OFF, all the control's functions are inactive and an alarm is generated to draw attention to this – all other alarms cease.

Refrigerant

Before regulation can be commenced, the refrigerant must be defined.

You can select one of the following refrigerants:

		5 5	
1 R12	9 R500	17 R507	25 R290
2 R22	10 R503	18 R402A	26 R600
3 R134a	11 R114	19 R404A	27 R600a
4 R502	12 R142b	20 R407C	28 R744
5 R717	13 User defined	21 R407A	29 R1270
6 R13	14 R32	22 R407B	30 R417A
7 R13b1	15 R227	23 R410A	
8 R23	16 R401A	24 R170	

The refrigerant can only be changed if the "Main switch" is set at "stopped control".

Warning: Incorrect selction of refrigerant can cause damage to the compressor.

Sensor failure

- If lack of signal from one of the connected temperature sensors or pressure transmitters is registered an alarm will be given.
- When there is a P0 error regulation will continue with 50% cut-in capacity during day operation and 25% cut-in capacity during night operation but minimum one step. (In AK-PC 730 the values can be set).
- When there is a Pc error 100% condenser capacity will be cut in, but the compressor regulation will remain normal.
- When there is an error on the Sd sensor the safety monitoring of the discharge gas temperature will be discontinued.
- When there is an error on the Ss sensor the monitoring of the superheat on the suction line will be discontinued.
- When there is an error on the outdoor temperature sensor Sc3 the "FDD" function will cease. Regulation with variable condensing pressure reference cannot either be carried out. Instead you use the PC ref. min. value as reference.
- NB: An incorrect sensor must be in order for 10 minutes before the sensor alarm deactivates.

Sensor calibration:

The input signal from all connected sensors can be corrected. A correction will only be necessary if the sensor cable is long and has a small cross-sectional area. All displays and functions will reflect the corrected value.

Clock function

The controller contains a clock function. The clock function is used only to change between day/night. The year, month, date, hour and minutes must be set.

Note: If the controller is not equipped with a RTC module (AK-OB 101A) the clock must be reset after each mains voltage outage.

If the controller is connected to an installation with an AKAgateway or an AK system manager, this will automatically reset the clock function.

Alarms and messages

In connection with the controller's functions, there are a number of alarms and messages that become visible in cases of fault or erroneous operation.

Alarm history:

The controller contains an alarm history (log) that contains all active alarms as well as the last 40 historical alarms. In the alarm history you can see when the alarm began and when it stopped. In addition, one can see the priority of each alarm as well as when the alarm has been acknowledged and by which user.

Alarm priority:

Differentiation is made between important and not-so-important information. The importance – or priority – is set for some alarms whilst others can be changed voluntarily (this change can only be done with attachment of AK-ST service tool software to the system and settings must be made in each individual controller).

The setting decides which sorting / action must be carried out when an alarm is sounded.

- "High" is the most important
- •"Log only" is the lowest
- "Interrupted" results in no action

Alarm relay

One can also choose whether one requires an alarm output on the controller as a local alarm indication. For this alarm relay it is possible to define on which alarm priority it must react to – one can choose between the following:

- "Non" no alarm relay is used
- "High' Alarm relay is activated only with alarms with high priority

• "Low - High' – Alarm relay is activated only with alarms with "low" priority, "medium" or "high" priority.

The relationship between alarm priority and action appears in the schedule below.

Setting	Log		Alarm relay	Send	AKM des-	
	_	Non High L		Low-High	Network	tination
High	Х		Х	Х	Х	1
Medium	Х			X	Х	2
Low	Х			Х	Х	3
Log only	Х					
Inter-						
rupted						

Alarm acknowledgement

If the controller is connected to a network with an AKA gateway or an AK system manager as alarm receiver, these will automatically acknowledge the alarms that are sent to them.

If the controller on the other hand is not included in a network, the user must acknowledge all alarms.

Alarm LED

The alarm LED on the front of the controller indicates the controller's alarm status.

Blinking: There is an active alarm or an unacknowledged alarm. Fixed light: There is an active alarm that has been acknowledged. Switched off: There are no active alarms and no unacknowledged alarms.

IO Status and manual

The function is used in connection with installation, servicing and fault-finding on the equipment.

With the help of the function, the connected outputs are controlled.

Measurements

The status of all inlets and outlets can be read and controlled here.

Forced operation

One can carry out an override of all outlets here to control whether these are correctly attached.

Note: There is no monitoring when the outlets are overridden.

Logging/registration of parameters

As a tool for documentation and fault-finding, the controller provides the possibility of logging of parameter data in the internal memory.

Via AK-ST 500 service tool software one can:

- a) Select up to 10 parameter values the controller will continuously register
- b) State how often they must be registered

The controller has a limited memory but as a rule of thumb, the 10 parameters can be saved, which are registered every 10 minutes for 2 days.

Via AK-ST 500 one can subsequently read the historical values in the form of graph presentations.

Forced operation via network

The controller contains settings that can be operated from the gateway's forced operation function via data communication.

When the forced operation function asks about one change, all the connected controllers on this network will be set simultaneously.

- There are the following options: - Change to night operation
- Forced closure of injection valves (Injection ON)
- Optimising of suction pressure (Po)

Operating AKM / Service tool

The setup of the controller itself can only be carried out via AK-ST 500 service tool software. The operation is described in fitters on site guide.

If the controller is included in a network with an AKA gateway one can subsequently carry out the daily operation of the controller via AKM system software, i.e. one can see and change daily readouts/settings.

Note: AKM system software does not provide access to all configuration settings of the controller. The settings/read-outs that may be made appear in the AKM menu operation (see also Literature overview).

Authorisation / Passwords

The controller can be operated with System software type AKM and service tool software AK-ST 500.

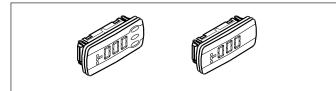
Both methods of operation provide the possibility for access to several levels according to the user's insight into the various functions.

System software type AKM:

The various users are defined here with initials and key word. Access is then opened to exactly the functions that the user may operate. The operation is described in the AKM manual.

The operation is described in the AKW manual.

Service tool software AK-ST 500: The operation is described in fitters on site guide.


When a user is created, the following must be stated: a) State a user name b) State a password c) Select user level d) Select units – either US (e.g. °F and PSI) or Danfoss SI (°C and Bar) e) Select language

Access is given to four user levels.

1) DFLT – Default user – Access without use of password
 See daily settings and read-outs.
 2) Daily – Daily user
 Set selected functions and carry out acknowledgement of alarms.
 3) SERV – Service user
 All settings in the menu system except for creation of new users
 4) SUPV – Supervisor user
 All settings including the creation of new users.

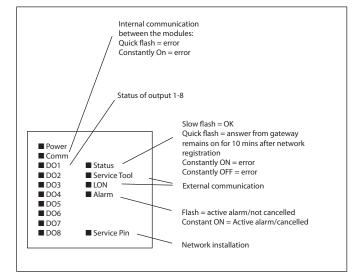
Danfoss

Display of suction pressure and condensing pressure

One or two separate displays can be connected to the controller. Connection is accomplished by means of wires with plug connections. The display may be placed in a control box front, for example. When a display with control buttons is chosen, a simple operation via a menu system can be performed in addition to the display of suction pressure and condensing pressure.

		1	Display a	Display b				
Application	Read out		menu / Function	Read out				
1 condenser	PcA	057	Control mode	PcA				
	-	058	Manual capacity					
	-	062	Quick setup select					
		093	Config lock Main switch					
		r12 r28	PcA SP °C					
		r29	PcA Ref °C					
		-						
		u44 u48	Sc3 ℃ Condenser A status					
		u48 u49						
		u49 u50	Cond. Cap. A% Req. Cond. Cap. A%					
		u30 u98	S7 temp. °C					
			Pc °C					
		u01						
1 sustion	PoA	059	Control mode	PoA				
1 suction	POA	059		POA				
		-	Manual capacity					
		062	Quick setup select					
	+	093	Config lock					
	+	r12	Main switch					
	+	r23 r24	PoA SP °C PoA Ref °C					
		-	1					
	+	r57	Po °C					
		u16	S4 temp. °C					
		u21	SH Temp K					
		u51	Suction A status					
		u52	Comp. Cap. A%					
		u53	Req. Comp. Cap. A%					
	-	u54	Sd temp °C					
		u55	Ss temp. °C					
		u99	Pctrl temp. °C					
1 pack	PoA, (PcA)	057	Control mode	PcA				
1 puer	10/0/00/0	058	Manual capacity					
	1	059	Control mode					
	1	060	Manual capacity					
	+	062	Quick setup select					
	-	093	Config lock					
		r12	Main switch					
	1	r23	PoA SP °C					
	1	r24	PoA Ref °C					
	+	r28	PcA SP °C					
	-	r29	PcA Ref °C					
	+	r57	Po °C					
	1	u16	S4 temp. ℃					
	1	u21	SH Temp K					
	1	u21	Sc3 ℃					
	1	u44 u48	Condenser A status					
	1	u40	Cond. Cap. A%					
	1	u49 u50	Req. Cond. Cap. A%					
	+	u50 u51	Suction A status					
	+	u51	Comp. Cap. A%					
	1	u52 u53	Req. Comp. Cap. A%					
	1	u53	Sd temp °C					
	+	u54	Ss temp. °C					
	+	u55 u98	S7 temp. ℃					
	1	u98 u99	Pctrl temp. °C					
	+	u99 u01	Pctritemp. C					
	+	uur						
No apri		112	Main switch					
No. appl.		r12 062	Main switch Quick setup select					
	+	062	Config lock					
	+	695						
		1	1	1				
Alarm		AL1	Fault in suction group					

When a display is connected, it will show the value for what is indicated in "Read out".


If you want to see one of the values for what is given under "function" you should use the buttons in the following way:

1. Press on the upper button until a parameter is shown

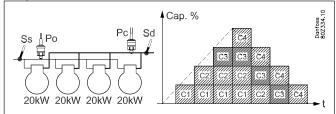
2.Press on the upper or lower button and find the parameter you want to read

3. Press on the middle button until the value of the parameter is displayed. After a short time, the display will return automatically to the "Read out display".

Light-emitting diodes on the controller

Appendix A – Compressor combinations and coupling patterns

In this section, there is a more detailed description of the compressor combinations and the associated coupling patterns. Sequential operation is omitted from the examples since the compressors are only connected in accordance with their compressor number (First In - Last Out principle) and only speed-regulated compressors are used to fill capacity gaps.

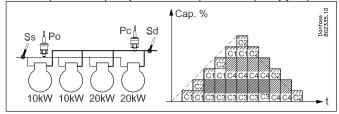

Compressor application 1 – single step

The capacity distributor is capable of managing up to 12 one-step compressors according to the following coupling patterns:

- Sequential
- Cyclical
- Best fit

Cyclical operation - example

Here, all compressors are of the same size and the compressors are cut in and cut-out in accordance with the First-In-First-Out (FIFO) principle, in order to equalise operating hours between the compressors.


- There is operating time equalizing between all compressors

- The compressor with the fewest running hours starts first

- The compressor with the most running hours stops first.

Best fit - example

Here are at least two compressors are of different sizes. The capacity distributor will cut in and cut-out the compressors to produce the best possible capacity fit (the least possible capacity jump).

- There is operating time equalizing between the compressors 1 and 2 (same size in example).

- There is operating time equalizing between the compressors 3 and 4 (same size in example).

Compressor application 2 – 1 x unload + single step

The controller is able to control a combination of one capacity controlled and multiple single step compressors. The advantage of this combination is that the unloader valves will be used to fill in capacity gaps and thereby achieve many capacity steps via few compressors.

Preconditions for using this compressor application are:

- All compressors are the same size
- The capacity-regulated compressor can have up to three unload valves.
- The main step and the unload valves can be different sizes, i.e. 50%, 25% and 25%.

This compressor combination can be handled in the following coupling patterns:

- Sequential
- Cyclical

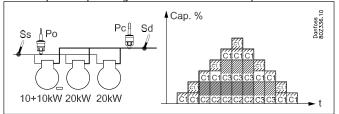
General regarding Handling:

Cutin

The capacity-regulated compressors with unloader valves start before one-step compressors. The capacity controlled compressor will always be fully loaded before cutting-in of subsequent one-step compressors.

Cutout

The capacity regulated compressor will always be the last to stop. The capacity controlled compressor will always be fully loaded before cut-in of subsequent one-step compressors. Unloader valves


At cyclical operation unloader valves are used to close capacity holes from the subsequent one-step compressors.

Anti-cycle timer restrictions

In case a capacity controlled compressor is prevented in starting due to anti-cycle timer restrictions, then the start of any subsequent one-step compressors is not allowed. The capacity controlled compressor is started when the timer restriction has expired.

Cyclical operation - example

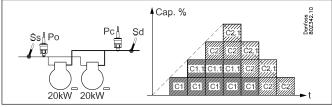
The one-step compressors will be cut in and cut-out in accordance with The First-In-First-Out (FIFO) principle in order to equalise operating hours between the compressors.

- The capacity controlled compressor is the first to start and the last to stop.
- Unloader valves are used to close capacity holes
- There is operating time equalizing between the compressors 2 and 3 (same size in example).

Compressor application 3 – Only capacity controlled compressors

The controller is capable of controlling capacity-regulated piston compressors of the same size with up to 3 unload valves.

Preconditions for using this compressor application are:


- All compressors are the same size
- The capacity-regulated compressors have the same number of unload valves (max 3)
- The main step on the capacity-regulated compressors are the same size
- The main step and the unload valves can be different sizes, i.e. 50%, 25% and 25%.

This compressor combination can be handled in the following coupling patterns:

- Sequential
- Cyclical

Cyclical operation - example

The compressors are cut in and cut out in accordance with the First-In-First-Out (FIFO) principle to equalise operating hours between compressors.

- For cyclical operation, the compressor with the fewest running hours starts (C1)
- Only when compressor C1 is completely loaded, should compressor C2 be cut in
- For cut-out, the compressor with the most operating hours should be unloaded (C1)
- When this compressor is completely unloaded, the second compressor is unloaded by one step before the main step on the completely unloaded compressor (C1) is cut out.

Compressor application 4 – 1 x Speed + single step

The controller is capable of controlling one speed-regulated compressor combined with one-step compressors of the same or different sizes.

Preconditions for using this compressor application are:

- A speed-regulated compressor that can be of a different size than the following one-step compressors
- Up to 3 one-step compressors of the same or different capacity (depending on coupling pattern)

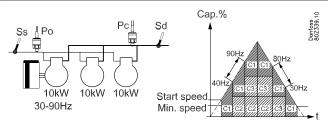
This compressor combination can be handled in accordance with the following coupling patterns:

- Sequential
- Cyclical
- Best fit

Handling the speed-regulated compressor.

For more information on the general handling of the speed-regulated compressor, refer to section "Power pack types".

Cyclical operation - example


Here, the one-step compressors are of the same size.

The speed-regulated compressor is always the first to start and the last to stop.

One-step compressors should be cut in and cut out in accordance with the First-In-First-out principle in order to equalise operating hours.

The speed-regulated compressor is used to fill the capacity gaps between the one-step compressors.

Increasing capacity:

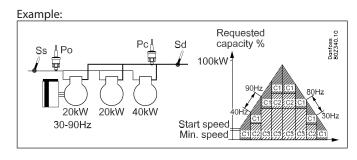
- The speed-regulated compressor starts when the desired capacity equals the start speed
- The following one-step compressor with the smallest number of operating hours cut in when the speed-regulated compressor is running at full speed (90 Hz)
- -When a one-step compressor cuts in, the speed-regulated compressor reduces speed (40 Hz) equivalent to the capacity of the one-step compressor.

Decreasing capacity:

- The following one-step compressors with the most operating hours should be cut out when the speed-regulated compressor reaches minimum speed (30 Hz)
- When a one-step compressor is cut out, the speed- regulated compressor's speed increases (80 Hz), equivalent to the capacity of the one-step compressor
- The speed-regulated compressor is the last compressor to be cut out when the preconditions for this are fulfilled.

Best fit - example:

Here, at least two of the one-step compressors are of different sizes.


The speed-regulated compressor is always the first to start and last to stop.

The capacity distributor cuts in and cuts out the one-step com-

pressors in order to achieve the best possible capacity fit (least possible capacity jump)

The speed-regulated compressor is used to fill out the capacity gaps between the one-step compressors.

Increasing capacity:

- The speed-regulated compressor starts when the desired capacity matches the start speed
- The smallest one-step compressor is cut in when the speed-regulated compressor runs at full-speed (90 Hz).
- When the speed-regulated compressor again reaches max. speed (90 Hz), the smallest one-step compressor is cut out (C2) and the big one-step compressor (C3) is cut in.
- When the speed-regulated compressor again reaches max speed (90 Hz), the smallest one-step compressor (C2) is cut in again.
- When the one-step compressor is cut in, the speed is reduced on the speed-regulated compressor (40 Hz) equivalent to the capacity of the cut in capacity

Decreasing capacity:

- The small one-step compressor is cut out when the speed-regulated compressor has reached minimum speed (30 Hz)
- When the speed-regulated compressor again reaches minimum speed (30 Hz), the smallest one-step compressor (C2) is cut out and the big one-step compressor (C3) is cut in.
- When the speed-regulated compressor again reaches min. speed (30 Hz), the large one-step compressor (C3) is cut out and the small one-step compressor (C2) is cut in again.
- When the speed-regulated compressor again reaches min. speed (30 Hz), the small one-step compressor (C2) is cut in.
- The speed-regulated compressor is the last compressor to be cut out when the requirements for this are fulfilled.
- When the one-step compressor's capacity is cut out, the speedregulated compressor increases speed (80 Hz) equivalent to the cut out capacity.

Compressor application 5 – 1 x Speed + unloader

The controller can operate one speed-regulated compressor combined with capacity-regulated compressors with one or two number of unloaders.

The advantage of this combination is that the variable part of the speed-regulated compressor only needs to be large enough to cover the following unload valves in order to achieve a capacity curve without gaps.

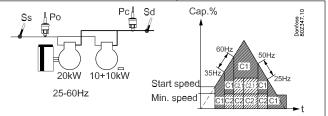
Preconditions for using this compressor application are:

- A single speed-regulated compressor that can be of a different size than the following compressors
- The capacity-regulated compressor has one or two unloader valves
- The main step on the capacity-regulated compressor can be different sizes than the unloader valves, i.e. 50%, 25% and 25%.

This compressor combination can be handled in the following coupling patterns:

- Sequential
- Cyclical

Handling the speed-regulating compressor.


For further information on the general handling of the speed-regulated compressor, refer to section "Power pack types".

Cyclical operation - example

The speed-regulated compressor is always the first to start and last to stop.

The capacity-regulated compressors are cut in and cut out in accordance with the First-in-First-Out principle in order to equalise operating hours

The speed-regulated compressor is used to fill the capacity gaps between the unload valves/main steps.

Increasing capacity:

- The speed-regulated compressor starts when the desired capacity matches the start speed
- The main step on the capacity-regulated compressor C2 cut in when the speed-regulated compressor runs at full speed (60 Hz)
- The unload valves are cut in when the speed-regulated compressor again reaches max. speed (60 Hz)
- When the main step or unload valves are cut in, the speed is reduced on the speed-regulated compressor (35 Hz) is equivalent to the capacity of the cut in capacity.

Decreasing capacity:

- When the speed-regulated compressor reaches min. speed (25 Hz), the unload valve is cut out on C2
- When the speed-regulated compressor again reaches min. speed (25 Hz), the main step on C2 is cut out
- The speed-regulated compressor is the last compressor that is cut out when the conditions for this are fulfilled
- When the main step or unload valves are cut out, the speed of the speed-regulated compressor increases (50 Hz) to equivalent to the cut out capacity

Compressor application 6 – 2 x Speed + single

The controller can control two speed-regulated compressors combined with several one-step compressors that may be the same or different in size (depending on the selected coupling pattern). The advantage of using two speed-regulated compressors is that it is then possible to reach a very low capacity, which is an advantage with low loads while at the same time a very high variable regulating range is possible.

Preconditions for using this compressor application are:

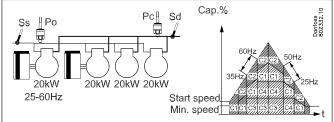
- Two speed-regulated compressors which can be of a different size than the following one-step compressors
- The speed-regulated compressors can be the same or different sizes (depending on the choice of coupling pattern)
- The same frequency band for both speed-regulated compressors
- One-step compressors of the same or different sizes (depending on the choice of coupling pattern)

This compressor combination can be handled in accordance with the following coupling patterns:

- Sequential
- Cyclical
- Best fit

Handling the speed-regulated compressor.

For more information on the general handling of the speed-regulated compressors, refer to section "Power pack types".


Cyclical operation - example

Here the speed-regulated compressors are the same size The one-step compressors should also be the same size.

The speed-regulated compressor is always the first to start and the last to stop.

The capacity-regulated compressors cut in and cut out in accordance with the operating time (First-In-First-Out principle). The speed-regulated compressor is used to fill the capacity gaps between the following one-step compressors.

Example:

Increasing capacity:

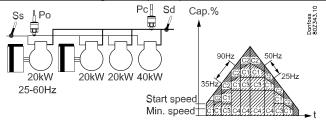
- The speed-regulated compressor with the least operating hours (C1) starts when the desired capacity equals the start speed
- The following speed-regulated compressor C2 is cut in when the first speed-regulated compressor (C1) has reached max. speed (60 Hz) so that the compressors run in parallel.
- When the two speed-regulated compressors reach full speed (60 Hz) the one-step compressor with the fewest operating hours is cut in (C3)
- When the two speed-regulated compressors again reach full speed (60 Hz) the last one-step compressor cuts in (C4)
- When one-step compressors are cut in , the speed is reduced on the speed-regulated compressor (35 Hz) equivalent to the cut in capacity.

Decreasing capacity:

- The one-step compressor with the most operating time (C3)

is cut out when the speed-regulated compressor reaches min speed (25 Hz)

- When the two speed-regulated compressors again reach min speed (25 Hz), the last one-step compressor is cut out (C4)
- When the two speed-regulated compressors again reach min speed (25 Hz), the speed-regulated compressor with the most operating hours is cut out (C1)
- The last speed-regulated compressor (C2) is cut out when the requirements for this are fulfilled
- When one-step compressors are cut out, the speed-regulated compressors' speed increases (50 Hz), equivalent to the cut out capacity.


Best fit - examples

Here, either the two speed-regulated compressors are of different sizes, or the following one-step compressors are of different sizes. The speed-regulated compressors are always the first to start and the last to stop.

The capacity distributor cuts in and cuts out both speed-regulated and one-step compressors in order to reach the best possible capacity adjustment (least possible capacity jump).

Example 1

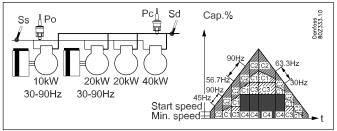
In this example, the speed-regulated compressors are of the same size and the following one-step compressors are of different sizes

Increasing capacity:

- The speed-regulated compressor with the least operating hours (C1) starts when the desired capacity equals the start speed
- When the first speed-regulated compressor (C1) has reached max. speed (60 Hz), the second speed-regulated compressor (C2) cuts in so that the compressors run in parallel
- When the two speed-regulated compressors reach full speed (60 Hz), the small one-step compressor (C3) is cut in
- When the two speed-regulated compressors again reach full speed (60 Hz), the large one-step compressor (C4) is cut in and the small one-step compressor (C3) is cut out
- When the two speed-regulated compressors again reach full speed (60 Hz), the small one-step compressor (C4) is cut in again.
- When the one-step compressor is cut in, the speed is reduced on the speed-regulated compressor (35 Hz) corresponding to the cut in capacity

Decreasing capacity:

- The small one-step compressor (C3) is cut out when the speedregulated compressor reaches the min. speed (25 Hz)
- When the two speed-regulated compressors again reach min. speed (25 Hz), the big one-step compressor (C4) is cut in and the small one-step compressor (C3) is cut out
- When the two speed-regulated compressors again reach min. speed (25 Hz), the large one-step compressor (C4) is cut out and the small one-step compressor (C3) is cut in
- When the two speed-regulated compressors again reach min speed (25 Hz), the speed-regulated compressor with the most operating hours (C1) is cut out
- The last speed-regulated compressor (C2) is cut out when the


Danfoss

requirements for this are fulfilled

- When one-step compressors cut out, the speed-regulated compressors increase speed (50 Hz), corresponding to the cut out capacity

Example 2:

In this example, the speed-regulated compressors are of different sizes and the following one-step compressors are also of different sizes.

Increasing capacity:

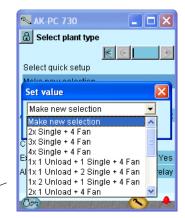
- The smallest speed-regulated compressor (C1) starts when the desired capacity equals the start speed
- When the smallest speed-regulated compressor (C1) has reached max. speed (90 Hz), the large speed-regulated compressor (C2) cuts in and the small speed-regulated compressor cuts out.
- When the large speed-regulated compressor reaches max. speed (90 Hz), the small speed-regulated compressor (C1) cuts in again so that the compressors run in parallel
- When the two speed-regulated compressors reach full speed (90 Hz), the small one-step compressor (C3) is cut in
- When the two speed-regulated compressors again reach full speed (60 Hz), the big one-step compressor (C4) cuts in and then the small one-step compressor (C3) cuts out
- When the two speed-regulated compressors again reach full speed (60 Hz), the small one-step compressor (C4) is cut in again.
- When the one-step compressors are cut in, the speed decreases on the speed-regulated compressor (56.7 Hz) corresponding to the cut in capacity

Decreasing capacity:

- The small one-step compressor (C3) is cut out when the speedregulated compressor reaches min. speed (30 Hz)
- When the two speed-regulated compressors again reach min. speed (30 Hz) the big one-step compressor (C4) cuts in and the small one-step compressor (C3) cuts out.
- When the two speed-regulated compressors again reach min. speed (30 Hz), the big one-step compressor (C4) cuts out and the small one-step compressor (C3) cuts in.
- When the two speed-regulated compressors again reach min. speed (30 Hz), the small speed-regulated compressor (C1) cuts out.
- When the big speed-regulated compressor reaches min. speed (30 Hz), it is cut out and the small speed-regulated compressor is cut in (C1)
- The small speed-regulated compressor (C1) is cut out when the conditions for this are met.
- When the one-step compressors are cut out, the speed-regulated compressors' speed increases (63.3 Hz) equivalent to the cut out capacity.

Danfoss

Danfoss


Appendix B - Recommened connection

Function

The controller has a setting where you can choose between various types of installation. If you use these settings, the controller will suggest a series of connection points for the different functions. These points are shown below.

Even if your installation is not 100% as described below, you can still use the function. After use, you need only adjust the divergent settings.

The given connection points in the controller can be changed if you wish.

Appl.	Compressor	Fans	Description	Module			Point no.				
					1	2	3	4	5	6	
1	ЛЛ		2 x single 4 fan	Module 1 - controller			Loadshed 1	Night	Heat recovery	Main Sw.	
	00			Module 2 - AK-XM 102B	Comp. 1 safety	Comp. 2 safety					
2		M M M M	3 x single 4 fan	Module 1 - controller			Loadshed 1	Night	Heat recovery	Main Sw.	
				Module 2 - AK-XM 102B	Comp. 1 safety	Comp. 2 safety	Comp. 3 safety				
3		M M M M	4 x single 4 fan	Module 1 - controller			Loadshed 1	Night	Heat recovery	Main Sw.	
	0000			Module 2 - AK-XM 102B	Comp. 1 safety	Comp. 2 safety	Comp. 3 safety	Comp. 4 safety			
4		M M M M	1 x 1 unload 1 single 4 fan	Module 1 - controller			Loadshed 1	Night	Heat recovery	Main Sw.	
				Module 2 - AK-XM 102B	Comp. 1 safety	Comp. 2 safety					
5	ЛЛЛ	M M M M	1 x 1 unload 2 single 4 fan	Module 1 - controller			Loadshed 1	Night	Heat recovery	Main Sw.	
5				Module 2 - AK-XM 102B	Comp. 1 safety	Comp. 2 safety	Comp. 3 safety				
6	ЛЛ		1 x 2 unload 1 single	Module 1 - controller			Loadshed 1	Night	Heat recovery	Main Sw.	
0			4 fan	Module 2 - AK-XM 102B	Comp. 1 safety	Comp. 2 safety					
7			2 x 1 unload 4 fan	Module 1 - controller			Loadshed 1	Night	Heat recovery	Main Sw.	
				Module 2 - AK-XM 102B	Comp. 1 safety	Comp. 2 safety					
8			1 x speed 4 fan	Module 1 - controller			Loadshed 1	Night	Heat recovery	Main Sw.	
				Module 2 - AK-XM 102B	Comp. 1 safety	VSD. 1 safety					
9		\mathbb{M} \mathbb{M} \mathbb{M}	1 x speed 1 single 4 fan	Module 1 - controller			Loadshed 1	Night	Heat recovery	Main Sw.	
				Module 2 - AK-XM 102B	Comp. 1 safety	VSD. 1 safety	Comp. 2 safety				
10	$\Box \land \land \land$		1 x speed 2 single 4 fan	Module 1 - controller			Loadshed 1	Night	Heat recovery	Main Sw.	
				Module 2 - AK-XM 102B	Comp. 1 safety	VSD. 1 safety	Comp. 2 safety	Comp. 3 safety			
11	$\square \square $		1 x speed 3 single 4 fan	Module 1 - controller		1/60 -	Loadshed	Night	Heat recovery	Main Sw.	
				Module 2 - AK-XM 102B	Comp. 1 safety	VSD. 1 safety	Comp. 2 safety	Comp. 3 safety	Comp. 4 safety		
12		M M M M	2 x speed 4 fan	Module 1 - controller	<u> </u>		Loadshed	Night	Heat recovery	Main Sw.	
			2	Module 2 - AK-XM 102B	Comp. 1 safety	VSD. 1 safety	safety	VSD. 2 safety	llest	Main C	
13	$\square \bigcirc \square \bigcirc \bigcirc$		2 x speed 1 single 4 fan	Module 1 - controller	Carry 1		Loadshed 1	Night	Heat recovery	Main Sw.	
				Module 2 - AK-XM 102B	Comp. 1 safety	VSD. 1 safety	Comp. 2 safety	VSD. 2 safety	Comp. 3 safety	Maria	
14			2 x speed 2 single 4 fan	Module 1 - controller	Con t	N(5) 1	Loadshed	Night	Heat recovery	Main Sw.	
				Module 2 - AK-XM 102B	Comp. 1 safety	VSD. 1 safety	Comp. 2 safety	VSD. 2 safety	Comp. 3 safety	Comp. 4 safety	

Danfoss

Appl.	I. Point no.													
	7	8	9	10	11	12	13	14	15	16	17	18	19	24
1	Sc3	Sd	Ss	PO	Pc	Comp. 1	Comp. 2			Fan 1	Fan 2	Fan 3	Fan 4	
2	Sc3	Sd	Ss	PO	Pc	Comp. 1	Comp. 2	Comp. 3		Fan 1	Fan 2	Fan 3	Fan 4	
3	Sc3	Sd	Ss	PO	Pc	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Fan 1	Fan 2	Fan 3	Fan 4	
4	Sc3	Sd	Ss	PO	Pc	Comp. 1	Comp. 1 unload 1	Comp. 2		Fan 1	Fan 2	Fan 3	Fan 4	
5	Sc3	Sd	Ss	PO	Pc	Comp. 1	Comp. 1 unload 1	Comp. 2	Comp. 3	Fan 1	Fan 2	Fan 3	Fan 4	
6	Sc3	Sd	Ss	PO	Pc	Comp. 1	Comp. 1 unload 1	Comp. 1 unload 2	Comp. 2	Fan 1	Fan 2	Fan 3	Fan 4	
7	Sc3	Sd	Ss	PO	Pc	Comp. 1	Comp. 1 unload 1	Comp. 2	Comp. 2 unload 1	Fan 1	Fan 2	Fan 3	Fan 4	
	6.0	6.1	-	20	2	C 1				F 4				
8	Sc3	Sd	Ss	PO	Pc	Comp. 1				Fan 1	Fan 2	Fan 3	Fan 4	Comp. Speed
						-								-
9	Sc3	Sd	Ss	PO	Pc	Comp. 1	Comp. 2			Fan 1	Fan 2	Fan 3	Fan 4	Comp. Speed
10	Sc3	Sd	Ss	PO	Pc	Comp. 1	Comp. 2	Comp. 3		Fan 1	Fan 2	Fan 3	Fan 4	Comp. Speed
										-		-	-	
11	Sc3	Sd	Ss	PO	Pc	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Fan 1	Fan 2	Fan 3	Fan 4	Comp. Speed
12	Sc3	Sd	Ss	PO	Pc	Comp. 1	Comp. 2			Fan 1	Fan 2	Fan 3	Fan 4	Comp. Speed
	6.2	C I	6	Do	D	Carrie 1	Carris	Come 2		Fee 1	For 2	Fex 2	Fax 1	C
13	Sc3	Sd	Ss	PO	Pc	Comp. 1	Comp. 2	Comp. 3		Fan 1	Fan 2	Fan 3	Fan 4	Comp. Speed
	Sc3	Sd	Ss	PO	Рс	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Fan 1	Fan 2	Fan 3	Fan 4	Comp.
14		54					Comprz	20						Speed

<u>Danfoss</u>

Danfoss

Installation considerations

Accidental damage, poor installation, or site conditions, can give rise to malfunctions of the control system, and ultimately lead to a plant breakdown.

Every possible safeguard is incorporated into our products to prevent this. However, a wrong installation, for example, could still present problems. Electronic controls are no substitute for normal, good engineering practice.

Danfoss wil not be responsible for any goods, or plant components, damaged as a result of the above defects. It is the installer's responsibility to check the installation thoroughly, and to fit the necessary safety devices.

Special reference is made to the necessity of signals to the controller when the compressor is stopped and to the need of liquid receivers before the compressors.

Your local Danfoss agent will be pleased to assist with further advice, etc.

<u>Danfvšš</u>

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alternations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respecitve companies. Danfoss and Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

DE-BD